Please use this identifier to cite or link to this item: http://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/5441
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKulli V.R
dc.contributor.authorSoner N.D.
dc.date.accessioned2020-06-12T15:08:00Z-
dc.date.available2020-06-12T15:08:00Z-
dc.date.issued1997
dc.identifier.citationIndian Journal of Pure and Applied Mathematics , Vol. 28 , 7 , p. 917 - 920en_US
dc.identifier.urihttp://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/5441-
dc.description.abstractLet F be a minimum edge dominating set of G. If E - F contains an edge dominating set say F?, then F? is called a complementary edge dominating set of G with respect to F. The complementary edge domination number ??c(G) of G is the minimum number of edges in a complementary edge dominating set of G. We note that ??c(G) is defined for graphs G with no isolated edges. In this paper, we obtain some bounds for ??c(G). Also Nordhaus-Gaddum type results are found.en_US
dc.subjectComplementary Edge
dc.subjectGraphs
dc.subjectNordhaus-gaddum Type
dc.titleComplementary edge domination in graphsen_US
dc.typeArticle
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.