Please use this identifier to cite or link to this item:
http://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/4469
Title: | Identification and classification of cocci bacterial cells in digital microscopic images |
Authors: | Hiremath P.S Bannigidad P. |
Keywords: | Bacterial image analysis Cell classification Cocci Diplococci K-NN classifier Neural network classifier Sarcinae Segmentation Staphylococci Streptococci Tetrad |
Issue Date: | 2011 |
Citation: | International Journal of Computational Biology and Drug Design , Vol. 4 , 3 , p. 262 - 273 |
Abstract: | In cytology, automating the feature extraction process yields an objective, quantitative, detailed and reproducible computation of cell morphofunctional characteristics and allows the analysis of a large quantity of images. The objective of the present study is to develop an automatic tool to identify and classify the different types of cocci bacterial cells in digital microscopic cell images. Geometric features are used to identify the arrangement of cocci bacterial cells, namely cocci, diplococci, streptococci, tetrad, sarcinae and staphylococci using 3?, K-NN and Neural network classifiers. The current methods rely on the subjective reading of profiles by a human expert based on the various manual staining methods. In this paper, we propose a method for cocci bacterial cell classification by segmenting digital bacterial cell images and extracting geometric and statistical features for cell classification. The experimental results are compared with the manual results obtained by microbiology expert and other methods in the literature. Copyright © 2011 Inderscience Enterprises Ltd. |
URI: | 10.1504/IJCBDD.2011.041414 http://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/4469 |
Appears in Collections: | 1. Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.