Please use this identifier to cite or link to this item: http://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/4239
Title: Effect of rotation on the onset of double diffusive convection in a Darcy porous medium saturated with a couple stress fluid
Authors: Malashetty M.S
Kollur P
Sidram W.
Keywords: Couple stress fluid
Double diffusive convection
Heat mass transfer
Porous media
Rotation
Weak nonlinear
Issue Date: 2013
Citation: Applied Mathematical Modelling , Vol. 37 , 43832 , p. 172 - 186
Abstract: The effect of rotation on the onset of double diffusive convection in a horizontal couple stress fluid-saturated porous layer, which is heated and salted from below, is studied analytically using both linear and weak nonlinear stability analyses. The extended Darcy model, which includes the time derivative and Coriolis terms, has been employed in the momentum equation. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. The effect of Taylor number, couple stress parameter, solute Rayleigh number, Lewis number, Darcy-Prandtl number, and normalized porosity on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that the rotation, couple stress parameter and solute Rayleigh number have stabilizing effect on the stationary, oscillatory, and finite amplitude convection. The Lewis number has a stabilizing effect in the case of stationary and finite amplitude modes, with a destabilizing effect in the case of oscillatory convection. The Darcy-Prandtl number and normalized porosity advances the onset of oscillatory convection. A weak nonlinear theory based on the truncated representation of Fourier series method is used to find the finite amplitude Rayleigh number and heat and mass transfer. The transient behavior of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge-Kutta method. © 2012 Elsevier Inc.
URI: 10.1016/j.apm.2012.02.024
http://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/4239
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.