Please use this identifier to cite or link to this item:
http://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/3713
Title: | Word level script identification in bilingual documents through discriminating features |
Authors: | Dhandra B.V Hangarge M Hegadi R Malemath V.S. |
Issue Date: | 2007 |
Citation: | Proceedings of ICSCN 2007: International Conference on Signal Processing Communications and Networking , Vol. , , p. 630 - 635 |
Abstract: | India is a multi-lingual and multi-script country where a line of a bilingual document page may contain text words in regional language and numerals in English. For Optical Character Recognition (OCR) of such a document page, it is necessary to identify different script forms before running an individual OCR of the scripts. In this paper, we examine the use of discriminating features (aspect ratio, strokes, eccentricity, etc,) as a tool for determining the script at word level in three bilingual documents representing Kannada, Tamil and Devnagari containing English numerals, based on the observation that every text has the distinct visual appearance. The knearest neighbour algorithm is used to classify the new word images. The proposed algorithm is tested on 2500 sample words with various font styles and sizes. The results obtained are quite encouraging. © 2007 IEEE. |
URI: | 10.1109/ICSCN.2007.350686 http://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/3713 |
Appears in Collections: | 2. Conference Papers |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.