Roll	No_		[Total No. of Pages : 2	
		PG4S-022-B-23		
		M.Sc. IV Semester Degree Examina	tion	
		ENVIRONMENTAL SCIENCE		
		Environmental Law, Audit, EIA and Occupati	ional Health	
		Paper: SCT 4.1		
		(CBCS Scheme)		
Tim	e · 3	Hours	Maximum Marks:80	
		on to Candidate:		
mst	ıucu	Answer ALL sections, Section-A is compulsory.		
		This wer the beet country and the same y		
		SECTION-A		
	Ans	wer ALL the following.	$(10 \times 2 = 20)$	
1.	a)	Sustainable development		
••	b)	Copyright		
	c)	Genetic waste		
	d)	E-waste		
	e)	Water audit		
	f)	Waste minimization		
	g)	EIS		
	h)	Ad-hoc method		
	i)	Accident hazard		
	j)	Industrial hygiene		
		SECTION-B	$(6 \times 5 = 30)$	
•	Answer any Six of the following.		(0^3-30)	
2.	•	Explain the intellectual property right. Write a note on the environmental protection act 1986.		
3.		Describe the biomedical waste management.		
4. 5	Explain the objectives of environmental audit.			
5. 6.	//-	Write a note on health and safety audit.		
7.		Explain the merits and demerits of EIA.		
8.	•	Describe the scope of EIA.		
9.		plain the social and legal reasons for accident prevention.		

SECTION-C

Answer any Three of the following.

 $(3\times10=30)$

- 10. Explain the polluter pay principle and precautionary principle.
- 11. Describe the water (prevention and control of pollution) Act 1974.
- 12. Explain the on-site and post-audit activities.
- 13. Describe the checklist and matrix method.
- 14. Explain the environmental factors and their effects on health workers and control measures.

PG4S-021-B-23

M.Sc. IV Semester Degree Examination ENVIRONMENTAL SCIENCE

Solid and Hazardous Waste Management

(CBCS Scheme)

Paper: HCT - 4.2

Time: 3 Hours

Maximum Marks:80

Instruction to Candidate:

Answer ALL sections, Section-A is compulsory.

SECTION-A

Answer **ALL** the following.

 $(10 \times 2 = 20)$

- 1. a) Rubbish
 - b) Rapid Composting
 - c) Hazardous waste
 - d) In-situ bioremediation
 - e) Xenobiotics
 - f) Leachate
 - g) Land farming
 - h) Biomethanation
 - i) Wet air oxidation
 - i) Infectious waste

SECTION-B

Answer any **Six** of the following.

 $(6 \times 5 = 30)$

- 2. Explain the impact of an indiscriminate disposal of solid waste.
- 3. Explain methods of thermo chemical conversion of solid waste.
- 4. Explain the cirteria for site selection and site characteristics of landfill site.
- 5. Write a note on incineration and pyrolysis.
- **6.** Discuss the concept of waste minimization.
- 7. Write a note on collection and storage of hazardous waste.
- **8.** Explain the guidelines for disposable hazardous waste.
- 9. Explain the E-waste disposable strategies.

SECTION-C

Answer Three of the following.

 $(3 \times 10 = 30)$

- 10. Explain the status of municipal solid waste in Indian cities.
- 11. Discuss on conversion of organic solid waste into organic manure by composting and vermicomposting.
- 12. Explain the classification and characterization of hazardous waste.
- 13. Discuss in detail the remediation of contaminated site.
- 14. Describe the treatement and disposal of biomedical waste management in India.

[Total No. of Pages: 2

PG4S-025-B-23

M.Sc. IV Semester Degree Examination MATHEMATICS

Computational Numerical Methods - II

Paper: HCT 4.3

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidate:

- 1) Answer any five full questions.
- 2) All questions carry equal marks.
- 1. a) Describe Eulers method for solving initial value problem y' = f(x, y) with $y(x_0) = y_0$.

 (8)
 - b) Use Runge-Kutta fourth order method to approximate y at x=0.2, given that y(0)=1 and $y'=x+y^2$ (use the step size h=0.1) (8)
- 2. a) Describe Runge-Kutta method for solving simultaneous first order differential equations and hence solve

$$v'' = xv' - v$$
; $v(0) = 3$, $v'(0) = 0$ and find $v(0.1)$. (8)

- b) Use Milne's method to find y(0.3) from $y' = x^2 + y^2$; y(0) = 1. Find the initial values y(-0.1), y(0.1) and y(0.2) from the Taylors series method. (8)
- 3. a) Describe Adam's-Bashforth predictor corrector method of solving an initial value problem y' = f(x, y) with $y(x_0) = y_0$. (8)
 - b) Write the classification of general second order partial differential equation and discuss the classification of physical problems. (8)
- 4. a) Derive explicit finite difference scheme to solve general parabolic partial differential equation. (8)
 - b) Use implicit finite difference Scheme to solve the IBVP $u_t = u_{xx} + (x-2)u_x 3u$ with initial condition $u(x,0) = x^2 4x + 5, 0 \le x \le 4, t > 0$; and the boundary conditions $u(0,t) = u(4,t) = 5e^{-t}, t > 0$. (8)

- 5. a) Use crank-Nicholson method to solve $u_t = u_{xx}$ with $u(x,0) = \sin \pi x$; $0 \le x \le 1$; u(0,t) = u(1,t) = 0, for one time step. (8)
 - b) Use ADI method to solve upto 2 levels of time of $\frac{\partial u}{\partial t} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ with the initial condition $u(x, y, 0) = \sin \pi x \sin \pi y, 0 \le x \le 1$ and boundary conditions $0 \le y \le 1$

$$u(x, y, t) = 0 \text{ for } x = 0 \text{ and } x = 1$$

$$u(x, y, t) = 1 \text{ for } y = 0 \text{ and } y = 1$$

$$for t > 0$$

$$Take h = \frac{1}{3}, K=1 \text{ so that } A = \frac{1}{3}.$$
(8)

- 6. a) Derive standard five-point formula and diagonal five point formula to solve the Laplace equation $u_{xx} + u_{yy} = 0$. (8)
 - b) Solve the Laplace equation $u_{xx} + u_{yy} = 0$ with the boundary conditions u(0,y) = 0, u(x,0) = 0 u(1,y) = 100y, u(x,1) = 100x by dividing the region into square mesh with a grid spacing of h = 0.25.
- 7. Solve $u_{xx} + u_{yy} = 9u : 0 \le x \le 1$ with u satisfying the above equation at every point inside the $0 \le y \le 1$ square and is subject to the boundary conditions

$$u=x$$
 at $y=0$
 $u=x+1$ at $y=1$

$$\frac{\partial u}{\partial x} = 2u - y \quad \text{at } x = 0$$

$$u = 2 \quad \text{at } x = 1$$

$$0 < y < 1 \text{ take } h = \frac{1}{3}.$$
(16)

- 8. a) Describe the implicit finite difference method to solve hyperbolic partial differential equation. (8)
 - b) Write a note on Galerkin method. (8)

PG4S-023-B-23

M.Sc. IV Semester Degree Examination

MATHEMATICS

Measure Theory

Paper: HCT 4.1

Time: 3 Hours

Maximum Marks:80

Instruction to Candidate:

- 1) Answer any five full questions.
- 2) All questions carry equal marks.
- 1. a) Define an outer measure. Let x be a space of at least two points and $x_0 \in X$. For each

$$A \subset X$$
, defined $\mu(A) = \begin{cases} 0 & \text{if } x_0 \notin A \\ 1 & \text{if } x_0 \in A \end{cases}$

Then prove that μ is an outer measure.

(8)

- b) Prove that the union and intersection of two outer measurable sets is measurable.(8)
- 2. a) Show that an open set in a metric space is measurable with respect to any outer measure.
 - ~ .
 - b) Define exterior and interior measure of a set. Show that $m_e(A) \ge m_i(A)$ for any Set A.
 - (8)
- 3. a) If E_1 and E_2 are measurable then prove that $E_1 \cup E_2$ is measurable. What do you say about $E_1 \cap E_2$ is measurable? Justify your answer. (8)
 - b) State and prove the second fundamental theorem. (8)
- 4. a) If f is a measurable function defined over a measurable set E. Let 'C' be any real number then show that cf, f+c, |f|, f^2 are measurable functions. (8)
 - b) Show that a continuous function defined in a closed interval is measurable. (8)
- a) Let <f_n> be a sequence of functions which converges in measure to the function f on a measurable set E. Then prove that there exists a subsequence which also converges to the function f almost everywhere.
 (8)
 - b) Define convergence in mean. If < f n > be a sequence of integrable functions which converge in mean to a function f_1 then show that $f_n \to f$ in measure also. (8)

- 6. a) If a function f is absolutely continuous in an interval and f'(x)=0 a.e. then prove that 'f' is a constant function. (8)
 - b) Define a function of bounded variation. If f(x) is continuous and integrable function

and
$$F(x) = \int_{a}^{x} f(t)dt + F(a)$$
 then prove that $F^{1}(x) = f(x)$ a.e. (8)

- 7. a) Define an absolutely continuous function. If f(x) and g(x) are obsolutely continuous functions then prove that their sum, difference and product are also obsolutely continuous function. (8)
 - b) Define an indefinite integral of a function. Prove that an indefinite integral is an absolutely continuous function. (8)
- a) Define a signed mesure. If v is a signed measure on a measurable space (X,A). Then prove that there exists a positive set P and a negative set Q such that P∩Q = φ, X = P∪Q where A being σ-algebra of subsets of X.
 (8)
 - b) Let (x, A, μ) be a σ -finite measure space and ν be a σ -finite measure defined on A. Then prove that there exists two uniquely determined measures r_0 and r_1 such that $r=r_0+r_1$ and $r_0\perp\mu$, $r_1<<\mu$. (8)

PG4S-027-B-23

M.Sc. IV Semester Degree Examination

MATHEMATICS

Fluid Mechanics - II

Paper: SCT 4.1

Time: 3 Hours

Instruction to Candidates:

1) Answer any five questions.

Maximum Marks: 80

- 2) All questions carry equal marks.
- 1. a) Derive the relation between stresses and rate of deformation. (8)
- b) Derive Navier-stokes equation for a viscous fluid. (8)
- 2. Derive the energy equation. (16)
- 3. a) Prove that any problem can be expressed in the form of the relationship between a group of variables i.e, $f(v_1, v_2,, v_n) = 0$ where f denotes a function of some variables v_i . (8)
 - b) Explain three different types of similarities. (8)
- 4. a) Define Froude number, Eulers number, Mach number and Reynolds number. (8)
 - Show that by means of dimensional analysis that the thrust T of a propeller is given by $T = \rho d^2 v^2 \phi \left(\frac{v d \rho}{\mu}, \frac{dn}{v} \right)$ where ρ is the fluid density, μ its viscosity, d is the diameter of the propeller, v is the speed of advance and n is the revolution per second. (8)
- 5. a) Derive the drag coefficient for plane foiseuille flow. (8)
 - b) Explain the temperature distribution for the plane couette flow. (8)
- 6. a) Derive the flux $Q = \frac{\pi G}{4\mu} \frac{a^3 b^3}{a^2 + b^2}$ for the fluid over the area of the elliptic cross-section. (8)
 - b) Derive the flux for the steady flow in pipes of rectangular section in the form,

$$Q = \frac{4c}{3\mu}ab^{3} - \frac{c}{\mu}\frac{256b^{4}}{\pi^{5}}\Sigma \frac{1}{(2n+1)^{5}}\tanh\{(2n+1)(\pi a/2b)\}.$$
 (8)