Roll No	[Total No. of Pages: 2

PG4S-010-B-23

M.Sc. IV Semester (CBCS) Degree Examination BIOCHEMISTRY

Recombinant DNA Technology and Bioinformatics Paper :SCT 4.1

Time: 3 Hours

Maximum Marks:80

Instructions to Candidates:

Answer question No.1 and any four of the remaining.

Answer any Ten of the following.

 $(10 \times 2 = 20)$

- 1. a) What are dideoxynucleotides? Mention their applications.
 - b) What is terminal deoxynucleotidyl transferase?
 - c) Give the classification of nucleases giving an example each.
 - d) Draw a neat diagram of pBR322.
 - e) What are palindromes? Give example.
 - f) What are Isoschizomer and Neoschizomers?
 - g) What is insertional inactivation? Give example.
 - h) What are fusion proteins? Give example.
 - i) What is GFP? Mention its application.
 - j) Elaborate the terms DDBJ, NCBI, EMBL and SWISSPORT?
 - k) What is Entrez?
 - 1) What does sequence alignment reveals?
- 2. a) Discuss the properties and functions of plasmid vectors used in genetic engineering.
 - b) Write the classification of restriction endonucleases and add a note on the applications of class II RE. (8+7=15)
- **3.** a) Discuss gene cloning in -vitro.
 - b) Discuss the methods of introduction of rDNA in to host cell.

(8+7=15)

- 4. a) Explain the process of Agrobacterium mediated gene transfer in plants.
 - b) Describe site-directed mutagenesis and its applications.

(8+7=15)

- 5. a) Discuss various types of PCR. Give their applications.
 - b) Describe the Western blotting technique. Mention its applications.

(8+7=15)

- **6.** a) Discuss the methods used to construct the phylogetic tree.
 - b) Explain the 2D PAGE and mention its applications.

(8+7=15)

Write notes on any Three of the following.

 $(3 \times 5 = 15)$

- 7. a) Transgenic animals
 - b) Blue-White screening
 - c) Application of rDNA technology
 - d) Microarray analysis

PG4S-009-B-23

M.Sc. IV Semester (CBCS) Degree Examination

BIOCHEMISTRY

Molecular Biology - II

Paper: HCT 4.2

Time: 3 Hours

Maximum Marks:80

Instructions to Candidates:

Answer question No.1 and any Four of the remaining.

Answer any Ten of the following.

 $(10 \times 2 = 20)$

- 1. a) What is promoter sequence? Write the structure of prokaryotic gene.
 - b) What is RNA editing?
 - c) What is reverse transcription?
 - d) Write the properties of tRNA.
 - e) How amino acids are activated during translation?
 - f) List out the inhibitors of eukaryotic translation.
 - g) How are membrane proteins synthesised?
 - h) What are extra and intra cellular signals?
 - i) What is catabolite repression?
 - j) What is Zing finger protein? List their functions.
 - k) What is helix-loop-helix motif? Give its importance.
 - 1) What are eukaryotic regulatory proteins?
- 2. a) Describe the structure and function of prokaryotic RNA polymerase.
 - b) Explain the mechanism of elongation and termination of prokaryotic. transcription.
 - c) Discuss the role of various transcriptional factors of class II genes.

 $(3 \times 5 = 15)$

- 3. a) Explain the post-transcriptional processing of mRNA and rRNA.
 - b) What were the key discoveries makes RNA is useful tool?
 - c) Describe the general features of genetic code.

 $(3 \times 5 = 15)$

- **4.** a) Explain the regulation of Lactose operon.
 - b) How do you prove that the protein biosynthesis occurs from N to C-terminal?
 - c) Discuss the contributions of Nirenberg and Khorana.

 $(3 \times 5 = 15)$

- 5. a) Discuss the exchange of ribosomal sub units during translation.
 - b) Explain the initiation and elongation steps in prokaryotic translation.
 - c) How proteins are destined to their targets?

 $(3 \times 5 = 15)$

- **6.** a) Discuss the posttranslational modification of proteins in prokaryotes.
 - b) Explain the regulation of galactose metabolism in Saccharomyces cerevisiae.
 - c) Outline the process of chromatin modification.

 $(3 \times 5 = 15)$

Write notes on any Three of the following.

 $(3 \times 5 = 15)$

- 7. a) Wobble hypothesis
 - b) Tryptophan operon
 - c) Gene amplification
 - d) Hormonal regulation of gene expression