PGIS-048-A-22

M.A/M.Sc. I Semester (CBCS) Degree Examination

STATISTICS

Linear Algebra

Paper : **HCT** - **1.1**

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer any SIX questions from Part- A and FIVE questions from Part - B.

 $PART - A \qquad (6 \times 5 = 30)$

- 1. Decide the nature of the following vector & also obtain relationship in case of dependence using sweepout method. $X_1 = (1,2,3,3)X_2 = (-1,0,4,5)X_3 = (0,1,3,4)$
- 2. Explain Gramschemidit's orthogonalization process.
- 3. Let $V = \{(x,y): y = mx + c; c \neq 0\}$ check whether V is a subspace or not.
- 4. Show that the number of members in a basis of subspace is invariant.
- 5. Find the inverse of A by Frames method, $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$
- **6.** Extend the vectors $X_1 = (1,0,1)$, $X_2 = (-1,1,0)$ to form a basis for V_3 .
- 7. Let A and B be any two square matrices of order nxn then show that $R(AB) \ge R(A) + R(B) n$
- **8.** Prove that eigne values of a Hermition matrix are real.

PART - B
$$(5 \times 10 = 50)$$

- 9. Obtain orthogonal vector by using the vectors (1,0,1), (-1,1,0) and (-3,2,0).
- 10. a) Obtain the basis for subspace spanned by the vectors $X_1 = (1,2,3), X_2 = (2,3,4), X_3 = (3,4,5,), X_4 = (4,5,6).$
 - b) If M_1 and M_2 be any two subspaces having the null vector as the only common vector

then prove that $\dim (M_1UM_2) = \dim (M_1) + \dim (M_2)$

- 11. a) Define Skew Hermitian matrix. Prove that a skew Hermitian matrix reduces to a real skew symmetric matrix where all the elements are real.
 - b) Define Moore-Penrose inverse. Prove its uniqueness property.
- 12. a) Find the inverse of matrix, $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix}$ by partition method.
 - b) Find a g-inverse for the following matrix $A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
- 13. Find characteristic root s and corresponding vectors of a given matrix

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

- 14. a) Prove that the system AX=0 has n-r linearly independent solutions, where 'n' is the number of columns in A and 'r' is its rank.
 - b) Show that for any characteristic root λ , G.M. $(\lambda) \leq A.M. (\lambda)$.
- 15. a) Find for what value of η the following system is consistent x+y+z=1: $x+2y+z=\eta$: $x+4y+10z=\eta^2$
 - b) State and prove sylvester's law of inertia.

PGIS-049-A-22

M.Sc. I Semester (CBCS) Degree Examination

STATISTICS

Probability Theory

Paper: HCT-1.2

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer any six questions from Part- A and any five questions from Part - B.

PART - A

 $(6 \times 5 = 30)$

- 1. Define Borel function, simple function and elementary function.
- 2. Define real valued function, inverse function and indicator function.
- 3. If $\sum_{i=0}^{n} PA_{i} < \infty$ then show that $P\left(\overline{\lim}A_{i}\right) \ge 0$.
- 4. Show that if EX and EY exist, then E $(X\pm Y) = EX \pm EY$.
- 5. Define
 - i) Mutual Convergence.
 - ii) Convergence in probability.
- **6.** Show that if $X_n \xrightarrow{p} X$ and $X \xrightarrow{p} X^1$ then X and X^1 are equivalent.
- 7. Find the characteristic function of Poisson distribution.
- 8. State and prove Khintchine's WLLN.

PART-B

 $(5 \times 10 = 50)$

- 9. a) Explain briefly the concept of probability.
 - b) Show that if $A_n \to A$ then $P(A_n) \to P(A)$.

- 10. State and prove Holder's inequality.
- 11. State and prove monotone convergence theorem.
- 12. Define convergence almost surely and show that $X_n \xrightarrow{r} X \Rightarrow E[X_n]^r \to E[X]^r$
- 13. Prove any two properties of characteristic function.
- 14. State and prove inversion formula of a characteristic function.
- 15. Define WLLN. Discuss Bernoullis and Chebychev's WLLN's.
- 16. State and prove Liapunov's form of CLT.

PGIS-050-A-22

M.A./M.Sc I Semester (CBCS) Degree Examination

STATISTICS

Estimation Theory

Paper: HCT - 1.3

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer any Six questions from Part- A and Five questions from Part - B.

PART-A

 $(6 \times 5 = 30)$

- 1. Define unbiasedness, consistency and efficiency of an estimator.
- 2. Let $X_1, X_2, X_3, \dots, X_n$ be b (1,P) random variables. Show that $T_n = \sum_{i=1}^n X_i$ be sufficient for p.
- 3. State and prove a sufficient condition of consistency of an estimator.
- 4. Let $X \sim B(N,P)$ then prove that $T = \overline{X}/N$ is MVB estimator of P.
- 5. Define the Maximum Likelihood Estimator (MLE) and explain the method of obtaining MLE.
- 6. Explain the method of minimum Chi-square to find an estimator of parameters of population.
- 7. Show that $\{P(\lambda), \lambda > 0\}$ is complete family.
- 8. Define CAN and BAN estimators and give an example of BAN estimator.

PART - B

 $(5 \times 10 = 50)$

- 9. Obtain an unbiased estimator of θ^k , k > 0 in $U(0, \theta)$ based on r^{th} order statistic.
- 10. a) Show that sample geometric mean is consistent estimator of θ in U(0, θ).
 - b) Let T_n be the consistent estimator for $g(\theta)$. show that if $T_1 \xrightarrow{p} g_1$ and $T_2 \xrightarrow{p} g_2$ $T_1T_2 \xrightarrow{p} g_1 g_2$ as $n \to \infty$

- 11. Let $N \sim N(\mu, \sigma^2)$. Obtain a sufficient statistic for
 - i) μ if σ^2 is known
 - ii) σ^2 if μ is known and
 - iii) μ and σ^2 if both are unknown.
- 12. State and prove Crammer-Rao inequality.
- 13. State and prove Rao -Blackwell theorem.
- 14. If $x_1, x_2, x_3, \dots, x_n$ be iid random variables from N (μ, σ^2) then obtain the confidence interval for mean μ at confidence level 1- α , when σ^2 is known
- 15. a) Describe the method of moments of estimation by giving an example.
 - b) If $X \sim P(\lambda)$, find the MLE of λ .
- **16.** Write short note on any **two** of the following:
 - i) Point estimation
 - ii) Confidence interval
 - iii) MVUE
 - iv) UMA and UMAU confidence sets.