PG4S-O-571-B-22 M.Sc. IV Semester Degree Examination MATHEMATICS

Differential Geometry

Paper: HCT - 4.4

(Old)

Time: 3 Hours

Maximum-Marks: 80

Instructions to Candidates:

- 1. Solve any Five questions.
- 2. All questions carry equal marks.
- 1. a) If f and g are the functions on E^3 , V_p and W_p are the tangent vectors, a,b are the numbers, then prove the following:

i)
$$(av_p + bw_p)[f] = av_p[f] + bw_p[f].$$

ii)
$$v_p[af + bg] = av_p[f] + bv_p[g].$$

iii)
$$v_p[fg] = v_p[f].g(p) + f(p).v_p[g].$$
 (8)

- b) Define reparametrization of a curve. Find a straight passing through the point (1,-3,-1) and (6,2,1). Does this line meet the line passing through points (-1,1,0) and (-5,-1,-1).
- 2. a) If f be a real valued function, ϕ and ψ be 1-forms on E³, then prove the following

i)
$$d(f\phi) = df \wedge \phi + f d\phi$$

ii)
$$d(\phi \wedge \psi) = d\phi \wedge \psi - \phi \wedge d\psi$$
 (8)

b) Define image of a curve under the mapping If the mapping $F: E^2 \to E^2$ is defined by $F(u,v) = (u^2v^2, 2uv)$ and $\alpha(t) = (r\cos t, r\sin t), 0 \le t < 2\pi$, is a curve in E^2 then find the image of the curve α and explain the effect of F on α . (8)

PG4S-O-571-B-22 M.Sc. IV Semester Degree Examination MATHEMATICS

Differential Geometry

Paper: HCT - 4.4

(Old)

Time: 3 Hours

Maximum-Marks: 80

Instructions to Candidates:

- 1. Solve any Five questions.
- 2. All questions carry equal marks.
- 1. a) If f and g are the functions on E^3 , V_p and W_p are the tangent vectors, a,b are the numbers, then prove the following:

i)
$$(av_p + bw_p)[f] = av_p[f] + bw_p[f].$$

ii)
$$v_p[af+bg] = av_p[f] + bv_p[g].$$

iii)
$$v_p[fg] = v_p[f].g(p) + f(p).v_p[g].$$
 (8)

- b) Define reparametrization of a curve. Find a straight passing through the point (1,-3,-1) and (6,2,1). Does this line meet the line passing through points (-1,1,0) and (-5,-1,-1).
- 2. a) If f be a real valued function, ϕ and ψ be 1-forms on E^3 , then prove the following

i)
$$d(f\phi) = df \wedge \phi + f d\phi$$

ii)
$$d(\phi \wedge \psi) = d\phi \wedge \psi - \phi \wedge d\psi$$
 (8)

b) Define image of a curve under the mapping If the mapping $F: E^2 \to E^2$ is defined by $F(u,v) = (u^2v^2, 2uv)$ and $\alpha(t) = (r\cos t, r\sin t), 0 \le t < 2\pi$, is a curve in E^2 then find the image of the curve α and explain the effect of F on α .

- 3. a) Establish the Frenet formulae for an unit speed curve $\beta: T \to E^3$ with K > 0. Compute Frenet frame (T, N, B) of an unit speed curve $\beta(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right)$ where $c = \left(a^2 + b^2\right)^{\frac{1}{2}}$. (10)
 - b) Define a plane curve in E^3 . Further, prove that for an unit speed curve β in E^3 with K > 0 is a plane curve if and only if $\tau = 0$.
- 4. a) Define a cylindrical helix. Prove that a regular curve α with K>0 is a cylindrical helix if and only if $\frac{\tau}{K}$ is constant. (8)
 - b) If (E_1, E_2, E_3) be a frame field on E^3 and for each tangent vector \mathbf{v} to E^3 at the point \mathbf{p} , let $w_{ij}(\mathbf{v}) = \Delta_{\mathbf{v}} E_i E_j(\mathbf{p}), (1 \le i, j \le 3)$ then show that each w_{ij} is a 1-form and $w_{ij} = w_{ji}$. (8)
- 5. a) Define an isometry of E^3 . Further, if F is an isometry of E^3 with F(0) = 0, then prove that F is an orthogonal transformation. (8)
 - b) If F is an isometry of E^3 , then prove that there exists a unique translation T & α unique orthogonal transformation C such that F = TC. (8)
- a) Define congruence of curves with an example. Two curves α,β: I → E³ are parallel if their velocity vectors α¹(s) andβ¹(s) are parallel for each S in I. If α(s₀) = β(s₀) for some s₀ in I then show that α ≅ β.
 - b) If $\alpha, \beta: I \to E^3$ are unit speed curves such that $k_{\alpha} = k_{\beta}$ and $\tau_{\alpha} = \pm \tau_{\beta}$, then prove that α and β are congruent curves. (8)
- 7. a) Define a cylinder in E^3 . Further, prove that every cylinder in E^3 is a surface in E^3 . (8)
 - b) Prove that a mapping $X: D \to E^3$ is regular iff $X_u(d) \& X_v(d)$ are the u, v partial derivatives of X(u,v) = X(d) are linearly independent $\forall d \in D$ where $D \subset E^3$ (8)

- 8. a) Explain the Stereo graphic projection of the punctured sphere S onto the plane. (6)
 - b) If ϕ be a 1-form on M and if X & Y are pathces in M, then prove that $d_X \phi = d_Y \phi$ on the overlap of X(D) and Y(D). (10)