|          |  | [Total No. of Pages : 3 |
|----------|--|-------------------------|
| Roll No. |  |                         |

# PGIS-021-A-22 M.Sc. I Semester (CBCS) Degree Examination CHEMISTRY

#### Analytical Chemistry - I

Paper: SCT - 1.1

Time: 3 Hours

Maximum Marks: 80

#### Instructions to Candidates:

- i. Answer All the questions.
- ii. All questions carry equal marks.

Answer any Eight questions.

 $(8 \times 2 = 16)$ 

- 1. a. What is stratified sampling? What is its advantages over random sampling?
  - b. A sample of steel showed following set of results for nickel; 50.4; 50.8; 49.5; 49.8; 50.4 mg. Calculate the standard deviation for the set of measurements.
  - c. Differentiate between detection limit and quantification limit.
  - d. Mention the principle of HPTLC.
  - e. What is synergic extraction? Give an example.
  - f. List the properties of carrier gas in GC with an example.
  - g. Write the structure of Morphine sulphate. Mention its application.
  - h. A 5.0 g of food sample was charred to ash at 800°C. If the ash content is 0.2 g, find the percentage of inorganic content in the food sample.
  - i. Sketch the conductometric titration curve for:
    - i. H<sub>3</sub>CCOOH and NaOH and
    - ii. HCl and NaOH.
  - j. Write the equation for half wave potential and give its significance.

PGIS-021-A-22/2022

(1)

[Contd....

- 2. a. What is an error? Explain the steps to be adopted for minimization of errors.
  - b. What is the significance of t test? A chemist analysed paracetamol in tablet using a newly developed method and obtained the following results: 100.6; 100.0; 100.2; 100.0 mg. If the theoretical value of calcium is 100.6 mg, find whether the newly developed method is having any significant difference from the standard method at 95% confidence level. (Given t value = 3.182).
  - c. What is six sigma concept? Explain its aim and importance.

(5+5+6=16)

(OR)

What is quality assurance? Discuss the role and functions of Quality assurance.

- 3. a. State the distribution law. Derive the relationship between distribution coefficient and distribution ratio.
  - b. Illustrate the principle and application of ion exchange chromatography.
  - c. With the help of a neat schematic diagram, explain the principle and working of HPLC. (5+5+6=16)

(OR)

Describe the principle of gas chromatography. Explain the working of thermal conductivity detector.

- 4. a. Write the difference between drug and medicine. Explain the drug screening using gas chromatography.
  - b. Discuss the methods for the determination of ash, crude fibre and moisture contents of food.
  - c. Why are preservatives used and mention their side effects? Explain the procedure for the determination of sulphates and benzoic acid in food. (5+5+6=16)

(OR)

What do you mean by CNS stimulants? Write the structure and explain the chemical procedure for the determination of Fenfluramine hydrochloride.

- 5. a. What are reference electrodes? Explain the construction and working of glass electrode.
  - b. Write the principle and applications of potentiometric titrations.
  - c. Briefly explain constant current and control potential coulometry and its applications. (5+5+6=16)

(OR)

Write a note on

- i. Pulse polarography and
- ii. Rapid scan polarography.

# PGIS-019-A-22 M.Sc. I Semester (CBCS) Degree Examination CHEMISTRY

## Inorganic chemistry - I Paper - HCT - 1.1

Time: 3 Hours

Maximum Marks: 80

#### Instructions to Candidates:

- i. Answer All questions.
- ii. All questions carry equal marks.

Answer any Eight of the following.

 $(8 \times 2 = 16)$ 

- 1. a. Write the expression for Kapustinskii's equation and give its significance.
  - b. The radii of Mg<sup>2+</sup> and S<sup>2-</sup> are 0.66 and 1.84A<sup>0</sup> respectively. Predict the most probable crystal structure of MgS.
  - c. Distinguish between p type and n type semiconductors.
  - d. Define Quadruple bond.
  - e. How can terminal and bridging carbonyl groups be distinguished by IR spectra? Give an example for each.
  - f. Calculate the spin only magnetic moment of a cobalt (III) complex if  $\Delta_0 = 18,200cm^{-1}$  and  $P = 21,000 \text{ cm}^{-1}$ .
  - g. Draw structures of isomers of following coordination species.
    - i.  $[Fe(NH_3)_2(CN)_4]^-$ .
    - ii.  $K[Cr(H_2O)_2(C_2O_4)_2]$ .
    - iii.  $[Co(en)_3]Cl_3$ .
    - iv. [Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>].
  - h. State Bronsted Lowry definition of acid base concept with an example.
  - i. Urea is an acid in liquid ammonia but base in glacial acetic acid. Why?
  - j. What are the limitations of non aqueous titrations in chemical analysis?

| 2. | a. | Derive Born - Lande equation and discuss its limitations. (5)                                                                                                |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | b. | What is VSEPR theory? Explain its application to predict the structure of covalent molecules taking BrF <sub>3</sub> and XeF <sub>4</sub> as an example. (5) |
|    | c. | Depict a Walsh diagram for AH <sub>2</sub> molecule based on it explain the shapes of linear and bent triatomic molecule. (6)                                |
|    |    | (OR)                                                                                                                                                         |
|    |    | What are semiconductors and explain the defects involved in ionic solids with example.                                                                       |
| 3. | a. | Write the structures and calculate the number of metal - metal bonds in $Fe_3(CO)_{12}$ and $Ir_4(CO)_{12}$ . (5)                                            |
|    | b. | Discuss briefly on tri - and tetra - nuclear clusters by taking suitable examples. (5)                                                                       |
|    | c. | Discuss the preparation, structure, bonding of dioxygen and dinitrogen metal complexes. (6)                                                                  |
|    |    | (OR)                                                                                                                                                         |
|    |    | Write a note on                                                                                                                                              |
|    |    | i. Chevrel phases and                                                                                                                                        |
|    |    | ii. One dimensional solids.                                                                                                                                  |
| 4. | a. | What is spin - orbital coupling? How does this influence the magnetic properties of metal complexes? (5)                                                     |
|    | b. | Describe the Jahn - Teller effect on octahedral complexes of Cr <sup>2+</sup> and Cu <sup>2+</sup> . (5)                                                     |
|    | c. | Explain in detail about the temperature effect on                                                                                                            |
|    |    | i. Diamagnetism.                                                                                                                                             |
|    |    | ii. Para magnetism                                                                                                                                           |
|    |    | iii. Ferromagnetism. (6)                                                                                                                                     |
|    |    | (OR)                                                                                                                                                         |
|    |    | Explain optical isomerism in complexes with coordination number 4 and 6 with examples.                                                                       |
| 5. | a. | What are the postulates of HSAB concepts? Give its applications. (5)                                                                                         |
|    | b. | Illustrate the applications of acid - base titrimetry in non - aqueous medium for the determination of phenols and amines. (5)                               |
| -  | c. | Write a note on                                                                                                                                              |
|    |    | i. Role of solvents in acid base titration and                                                                                                               |
|    |    | ii. Steric effects. (6)                                                                                                                                      |
|    |    | (OR)                                                                                                                                                         |

Explain with examples the types of reactions in liquid ammonia and acetic acid.

#### PGIS-020-A-22 M.Sc. I Semester (CBCS) Degree Examination **CHEMISTRY**

Physical chemistry Paper - HCT - 1.3

| nr: | 2   | Hours Maximum Ma                                                                | arks · 80  |
|-----|-----|---------------------------------------------------------------------------------|------------|
|     |     |                                                                                 | II NS . OU |
| Ins |     | ons to Candidates:                                                              |            |
|     | i.  | Answer all questions.                                                           |            |
|     | ii. | All questions carry equal marks.                                                |            |
|     | Ans | swer any <b>Eight</b> of the following:                                         | 8×2=16)    |
| 1.  | a.  | Differentiate classical and quantum mechanics with example.                     |            |
|     | b.  | State Pauli's exclusion principle?                                              |            |
|     | c.  | Define buffer action.                                                           |            |
|     | d.  | Why are ion - ion bonds in a supramolecule considered as secondary bonds        | ?          |
|     | e.  | Define Z - average molecular weight of a polymer.                               |            |
|     | f.  | Define glass transition temperature and melting temperature of polymers?        |            |
|     | g.  | Give dynamics of fast reactions?                                                |            |
|     | h.  | Give comparision of CST and TST.                                                |            |
|     | i.  | Give biomedical applications of polymers?                                       |            |
|     | j.  | Write short note on De - Broglie's hypothesis.                                  |            |
| 2.  | a.  | What are Eigen Value and Eigen Functions? Write their significance.             | (5)        |
|     | b.  | Discuss the postulates of quantum mechanics.                                    | (5)        |
|     | c.  | Derive the expression for the particle in a one dimensional box.                | (6)        |
|     |     | (OR)                                                                            |            |
|     |     | Derive the expression for particle in a ring.                                   |            |
| 3.  | a.  | State and discuss Debye - Huckel limiting law.                                  | (5)        |
|     | b.  | Write the importance of buffer solutions in biological solutions.               | (5)        |
|     | C.  | Give an account of the different types of bindings observed in a typical suprar |            |
|     |     | (OB)                                                                            | (6)        |
|     |     | (OR)                                                                            |            |
|     |     | Write a short note on rotaxane molecules.                                       |            |

(1)

PGIS-020-A-22/2022

[Contd....

| 4. | a. | Explain number average and weight average molecular weight of polymers.                            | (5)         |
|----|----|----------------------------------------------------------------------------------------------------|-------------|
|    | b. | Discuss the determination of the molecular weight of a polymer employing the scattering technique. | e light (5) |
|    | c. | Discuss the general classification of polymers.                                                    | (6)         |
|    |    | (OR)                                                                                               |             |
|    |    | Write notes on Interpenetrating networks and degree of polymerization in poly                      | ymers.      |
| 5. | a. | Discuss transition state theory with example.                                                      | (5)         |
|    | b. | What is relaxation time? Explain the relaxation method in the study of fast re                     | action      |
|    |    | kinetics.                                                                                          | (5)         |
|    | c. | Give an account of Lindemann's theory of unimolecular reaction rates.                              | (6)         |
|    |    | (OR)                                                                                               |             |
|    |    | Explain, Maxwell's relations.                                                                      |             |

# PGIS-018-A-22 M.Sc. I Semester (CBCS) Degree Examination CHEMISTRY ORGANIC CHEMISTRY - I

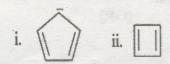
Paper: HCT 1.2

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- i) Answer all questions
- ii) All questions carry equal marks.


Answer any EIGHTof the followings.

 $(8 \times 2 = 16)$ 

- 1. a) What is hybridisation index?
  - b) Illustrate hyperconjugation with an example.
  - c) Give any one method for the generation of carbocations.
  - d) Define the terms order and molecularity of a reaction.
  - e) Define epimers with an example.
  - f) Write the E/Z nomenclature for the followings:

i. 
$$H_3C$$
  $CH_2-CI$   $II.$   $HO-CH_2$   $CH_3-CH_3$ 

- g) What is Neber rearrangement? Write its mechanism.
- h) Sketch the mechanism of Dakin's reaction
- i) Write the most stable conformation of 1-methyl-3 tert. Butylcyclohexane.
- j) Explain whether the following compounds are aromatic or non-aromatic:



Explain with suitable examples conjugation, cross-conjugation and tautomerism. b) Discuss the aromaticity of benzenoid and non-benzenoid compounds. c) c) Write notes on: Delocalised chemical bonding Aromaticity of tropones and tropolones. (5+5+6=16)Illustrate with suitable examples how the cross-over experiment is useful to determine 3. the mechanism of a reaction. Give any two methods for the generation of carbenes. Explain with suitable example b) how the singlet and triplet state of carbene are differentiated. Write notes on: c) Stereochemistry of SN1 and SN2 reactions. Generation, structure, stability and reactions of free radicals. (OR) Write briefly on: c) Isotopic labelling in determining the reaction mechanism. (5+5+6=16)Yelides and enamines: generation and reactions. Write an account on R/S (CIP) nomenclature of compound containing more than one a) chiral centres. Discuss the conformational analysis of cyclohexane. b) Write notes on: Projection formulae. Curtin-Hammett principle. (OR) Write briefly on: Pseudo-asymmetric compounds. Conformational analysis of cis-trans decalins. (5+5+6=16)What is Wagner-Meerwein reaction? Explain its mechanism and mention its 5. a) applications. Illustrate with appropriate example mechanism of Baker-Venkataraman rearrangement. Give its applications. Write notes on: c) Shapiro reaction. Hofmann rearrangement. (OR) Write briefly on: c)

Write an account on alternant and non-alternant hydrocarbons.

(5+5+6=16)

Wittig rearrangement

Pinacol-pinacolone rearrangement.

2.

# PGIS-019-A-22 M.Sc. I Semester (CBCS) Degree Examination CHEMISTRY

### Inorganic chemistry - I Paper - HCT - 1.1

Time: 3 Hours

Maximum Marks: 80

#### Instructions to Candidates:

- i. Answer All questions.
- ii. All questions carry equal marks.

Answer any Eight of the following.

 $(8 \times 2 = 16)$ 

- 1. a. Write the expression for Kapustinskii's equation and give its significance.
  - b. The radii of Mg<sup>2+</sup> and S<sup>2-</sup> are 0.66 and 1.84A<sup>0</sup> respectively. Predict the most probable crystal structure of MgS.
  - c. Distinguish between p type and n type semiconductors.
  - d. Define Quadruple bond.
  - e. How can terminal and bridging carbonyl groups be distinguished by IR spectra? Give an example for each.
  - f. Calculate the spin only magnetic moment of a cobalt (III) complex if  $\Delta_0 = 18,200cm^{-1}$  and  $P = 21,000 \text{ cm}^{-1}$ .
  - g. Draw structures of isomers of following coordination species.
    - i.  $[Fe(NH_3)_2(CN)_4]^{-}$ .
    - ii.  $K[Cr(H_2O)_2(C_2O_4)_2]$ .
    - iii.  $[Co(en)_3]Cl_3$ .
    - iv.  $[Pt(NH_3)_2Cl_2]$ .
  - h. State Bronsted Lowry definition of acid base concept with an example.
  - i. Urea is an acid in liquid ammonia but base in glacial acetic acid. Why?
  - j. What are the limitations of non aqueous titrations in chemical analysis?

PGIS-019-A-22/2022

(1)

[Contd....

| 2. | a. | Derive Born - Lande equation and discuss its limitations. (5)                                                                              |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------|
|    | b. | What is VSEPR theory? Explain its application to predict the structure of covalent molecules taking $BrF_3$ and $XeF_4$ as an example. (5) |
|    | c. | Depict a Walsh diagram for AH <sub>2</sub> molecule based on it explain the shapes of linear and bent triatomic molecule. (6)              |
|    |    | (OR)                                                                                                                                       |
|    |    | What are semiconductors and explain the defects involved in ionic solids with example.                                                     |
| 3. | a. | Write the structures and calculate the number of metal - metal bonds in $Fe_3(CO)_{12}$ and $Ir_4(CO)_{12}$ . (5)                          |
|    | b. | Discuss briefly on tri - and tetra - nuclear clusters by taking suitable examples. (5)                                                     |
|    | c. | Discuss the preparation, structure, bonding of dioxygen and dinitrogen metal complexes. (6)                                                |
|    |    | (OR)                                                                                                                                       |
|    |    | Write a note on                                                                                                                            |
|    |    | i. Chevrel phases and                                                                                                                      |
|    |    | ii. One dimensional solids.                                                                                                                |
| 4. | a. | What is spin - orbital coupling? How does this influence the magnetic properties of metal complexes? (5)                                   |
|    | b. | Describe the Jahn - Teller effect on octahedral complexes of Cr <sup>2+</sup> and Cu <sup>2+</sup> . (5)                                   |
|    | c. | Explain in detail about the temperature effect on                                                                                          |
|    |    | i. Diamagnetism.                                                                                                                           |
|    |    | ii. Para magnetism                                                                                                                         |
|    |    | iii. Ferromagnetism. (6)                                                                                                                   |
|    |    | (OR)                                                                                                                                       |
|    |    | Explain optical isomerism in complexes with coordination number 4 and 6 with examples.                                                     |
| 5. | a. | What are the postulates of HSAB concepts? Give its applications. (5)                                                                       |
|    | b. | Illustrate the applications of acid - base titrimetry in non - aqueous medium for the determination of phenols and amines. (5)             |
|    | c. | Write a note on                                                                                                                            |
|    |    | i. Role of solvents in acid base titration and                                                                                             |
|    |    | ii. Steric effects. (6)                                                                                                                    |
|    |    | (OR)                                                                                                                                       |

Explain with examples the types of reactions in liquid ammonia and acetic acid.