Roll	No			

PGIS-013-A-22

M.Sc. I Semester Degree Examination

BIOCHEMISTRY

Food and Nutrition

Paper: SCT - 1.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer question one and any four of the remaining.

Answer any TEN of the following.

 $(10 \times 2 = 20)$

- 1. a) What is RDA? Mention its importance.
 - b) Define food fortification. Give its importance.
 - c) What is good source of iron?
 - d) Differentiate between macro and micro nutrients with suitable examples.
 - e) What is ORS? Give tis composition.
 - f) What are antivitamins? Give example.
 - g) Name the microorganisms involved in food spoilage.
 - h) What is Phrynoderma? Mention the cause for its occurrence.
 - i) Expand and mention the significance of MUFA and PUFA...
 - j) Why is labelling of food important?
 - k) Draw the skeletal formula of linolenic acid.
 - 1) Mention any two milk adulterants and methods to detect the same.
- 2. a) Discuss the classification of foods.
 - b) Enumerate the role of essential fatty acids.
 - c) Discuss sources, types and role of dietary fibres.

(5+5+5=15)

PGIS-013-A-22 /2022

(1)

[Contd....

- 3. a) What is BMR? Discuss factors affecting it.
 - b) What is PCM? Discuss causes and preventive measures for Kwashiorkar and Marasmus. (8+7=15)
- 4. Explain structure, sources and deficiency symptoms of the following
 - a) Vitamin A
 - b) Vitamin C
 - c) Vitamin D (5+5+5=15)
- 5. a) Describe the different methods of food preservation.
 - b) What are Good Manufacturing Practises? Explain. (8+7=15)
- 6. a) What is water balance? Explain the regulation of water balance.
 - b) Explain the role of nutrition in adolescence and pregnancy. (7+8=15)
- 7. Write notes on any THREE of the following: $(3\times5=15)$
 - a) Proximate analysis of food
 - b) Food allergy
 - c) Bomb calorimeter
 - d) Natural toxicants in food.

No	
NO	

PGIS-011-A-22

M.Sc. I Semester Degree Examination

BIOCHEMISTRY

Analytical Biochemistry

Paper: HCT 1.2

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates: Answer question one and any four of the remaining.

Answer any TEN of the following.

 $(10 \times 2 = 20)$

- 1. a) Give the principle of iso-electrofocusing.
 - b) What is void volume and bed volume?
 - c) Outline principle of Pulse Field Gel Electrophoresis.
 - d) What are different types of ion-exchangers? Give examples.
 - e) Mention types of isotopes with suitable examples.
 - f) Give principle of atomic absorption spectroscopy.
 - g) Write principle and applications of dialysis.
 - h) Give the principle of TLC and mention its merits over paper chromatography.
 - i) Write principle of CD-ORD.
 - j) Define molar extinction co-efficient.
 - k) Outline principle of IR spectroscopy? Mention its two applications.
 - 1) Give principle of capillary electrophoresis.
- 2. a) Explain principle and procedure of gas chromatography.
 - b) Discuss principle, procedure and applications of HPLC.

(8+7=15)

- 3. a) What is density gradient centrifugation? Discuss with suitable example.
 - b) Discuss the working principle of Fluorescence microscopy. Add a note on its applications. (8+7=15)

- 4. a) Give an account on agarose gel electrophoresis and its applications.
 - b) Discuss the working principle and applications of high voltage electrophoresis.

(8+7=15)

- 5. (a) Write the construction of GM counter and mention its applications in biological science.
 - b) Give an account on Autoradiography and its applications. (8+7=15)
- 6. a) Draw a block diagram of UV-Vis spectrophotometer. Briefly describe how you would experimentally determine the concentration of a protein spectrophotometrically?
 - b) Discuss principle and applications of NMR spectroscopy. (8+7=15)
- 7. Write notes on any THREE of the following: $(3\times5=15)$
 - a) 2D Electrophoresis.
 - b) Affinity Chromatography
 - c) Ultracentrifugation.
 - d) Mass spectroscopy.

Roll No	

PGIS-012-A-22

M.Sc I Semester (CBCS) Degree Examination **BIOCHEMISTRY**

Cell Biology and Microbiology

Paper: HCT 1.3

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer question ONE and any FOUR of the remaining.

Answer any TEN of the following. $(10\times2=20)$

- 1. List the components of a eukaryotic cell.
 - Why is meiosis considered reduction division? b)
 - What is meant by an integral protein? c)
 - Define diffusion. d)
 - What is olfaction? What is its role? e)
 - What is a sarcomere? f)
 - Write briefly on different shapes observed in bacteria. g)
 - h) What are neurotransmitters? Give example.
 - i) Write the characteristics of mycoplasma.
 - What is Pasteurization? i)
 - k) Define disinfection. Write two examples.
 - 1) Name two diseases caused by different parasites.
- 2. Explain the methods employed for sub-cellular fractionation of cell organelles. a)
 - b) Describe cell cycle and its regulation.

(8+7=15)

- 3. a) Write the mechanism of transport by various ATP ases.
 - b) Explain the steps involved in the transmission of nerve impulse. (8+7=15)
- 4. (a) Describe the structural components of a bacterial cell.
 - b) Elaborate on conventional methods adopted for classification of bacteria. (8+7=15)
- 5. a) Write in detail on sterilization methods of bacteriological media.
 - b) Depict a typical bacterial growth curve and explain the factors that influence bacterial growth. (8+7=15)
- 6. a) Explain Singer-Nicolson model of membranes.
 - b) Write an essay on mechanism of vision. (8+7=15)
- 7. Write notes on any THREE of the following: (3×5=15)
 - a) Cardiac muscle contraction and regulation.
 - b) Cyanobacteria.
 - c) Chemostat.
 - d) Bacterial endotoxins.

Roll No		

PGIS-010-A-22

M.Sc. I Semester Degree Examination

BIOCHEMISTRY

Biomolecules

Paper: HCT 1.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates: Answer question No. 1 and any four of the remaining.

Answer any TEN of the following.

 $(10 \times 2 = 20)$

- 1. a) Define buffer and buffer action.
 - b) Draw different configurations for glucose
 - c) Give the structural features of starch
 - d) What are bile salts? Give examples.
 - e) Give the structure of sphingolipid and its function.
 - f) Write the features of peptide bond.
 - g) How does amino acid react with ninhydrine?
 - h) Write the structural features of alpha keratin.
 - i) What is the role of BPG on haemoglobin?
 - j) How is Tm of DNA determined?
 - k) Sketch and label the clover leaf model of tRNA.
 - 1) Mention stereo isomers of keto-sugars.

2.	a)	Derive the Hendersson-Hesselbach equation and give its importance.	
	b)	What is pKa? How is it determined?	(8+7=15)
3.	a)	What are homopolysaccharides? Add a note on their structures and func	tions.
	b)	Give the classification of lipids with example for each class.	(8+7=15)
4.	a)	Explain the action of phenylisothiocyanate and CNBr on protein	
	b)	Draw the titration curve for glycine.	
	`c)	Describe the structural features of collagen.	$(3 \times 5 = 15)$
5.	a)	Describe the structural features of haemoglobin and myoglobin.	
	b)	Derive the hill equation for oxygen binding to haemoglobin.	(8+7=15)
6.	a)	Write the structural features of A,B - and Z-DNA.	West .
	b)	Describe DNA sequencing methods.	(8+7=15)
7.	Wri	te notes on any THREE of the following:	(3×5=15)
	a)	Structure of bacterial cell wall	
	b)	Ramachandran plot	
	c)	Abnormal hemoglobins	# 15 T
	d)	Restriction endonucleases.	