Roll No. of Pages : 2

PG2S-035-B-22 M.Sc. II Semester Degree Examination

APPLIED ELECTRONICS Fundamentals of Electronics

Paper: OET - 2.1

Maximum Marks: 80

PART-A

Attempt any EIGHT of the following.

 $(8 \times 2 = 16)$

- 1. a) Define electric current and write the formula to calculate electric current.
 - b) State KCL and KVL.

Time: 3 Hours

- c) Write any two applications of LED.
- d) What is depletion region of diode?
- e) Define transconductance for JFET.
- f) Give any two ideal characteristics of an op-amp.
- g) Draw ideal and practical frequency response of high pass filter.
- h) Define op-amp comparator.
- i) Mention the need for power supply.
- j) Draw the pin diagram of IC555 timer.

PART-B

Answer any FOUR of the following.

 $(4 \times 7 = 28)$

- 2. State and Prove Maximum Power Transfer Theorem.
- 3. Distinguish between BJT and FET.
- 4. Explain the working of instrumentation amplifier.
- 5. With a neat circuit diagram, explain IC Regulated power supply.
- **6.** Explain two port transistor model of BJT.
- 7. What is Schmitt trigger? Explain its working.

[Contd....

PART-C

Answer any THREE of the following.

 $(3 \times 12 = 36)$

- 8. State and explain Thevenin's theorem with an example.
- **9.** Explain the construction, working of photodiode with an application.
- 10. Explain first order low pass filter using op-amp with relevant expressions.
- 11. Explain the working of monostable multivibrator using IC-555.
- 12. Write short notes on any TWO.

 $(2 \times 6 = 12)$

- i). Active elements
- ii). Solar cell
- iii). Precision Rectifier
- iv). D-A converters.

Roll No.		
----------	--	--

[Total No. of Pages: 2

PG2S-036-B-22 M.Sc. II Semester Degree Examination APPLIED ELECTRONICS

Basic Electronics

Paper: OET - 2.2

Time: 3 Hours

Maximum Marks: 80

PART-A

Attempt any Eight of the following.

 $(8 \times 2 = 16)$

- 1. a) Define the following diode parameters.
 - i. Static resistance.
 - ii. Maximum forward currents.
 - b) Distinguish between Zener and Avalanche breakdown.
 - c) What is rectifier circuit? Mention different types of rectifiers.
 - d) Draw the circuit diagram and VI characteristics of full wave rectifier.
 - e) Mention the characteristics of p-channel JFET.
 - f) State Barkhausen's Criteria.
 - g) What is Oscillator? Mention types of oscillators.
 - h) Define inverting and non-inverting OP-Amp
 - i) Mention applications of UJT.
 - j) What is voltage divider bias?
 - k) Compare CE and CB configuration characteristics of a BJT.

PART-B

Answer any Four of the following.

 $(4 \times 7 = 28)$

- 2. Explain the operation of pn-junction diode under forward and reverse bias condition with help of VI characteristics curve.
- 3. Derive the expression for I_{dc} , V_{dc} , I_{rms} , V_{rms} , efficiency, ripple factor and PIV of half wave rectifier.
- 4. Explain the working and characteristics of n- channel JFET.
- 5. Draw and explain the operation of SCR using two-transistor equivalent circuit.
- 6. Design an inverting summing circuit with feedback $R_f = 100 k\Omega$ using an op-amp to

PG2S-036-B-22/2022

(1)

[Contd....

generate the output $V_0 = -[3V_1 + 4V_2 + 5V_3]$.

7. Explain RC phase shift oscillator with circuit diagram and necessary equation.

PART-C

Answer any Three of the following.

 $(3 \times 12 = 36)$

- 8. a) With a neat diagram, explain the working of two diode full wave rectifier along with relevant waveform. (8+4)
 - b) Show that the ripple factor of half wave rectifier is 1.21 and efficiency 40%.
- 9. a) Explain phase control application of SCR.

(6+6)

- b) Distinguish between BJT and FET.
- 10. a) With a neat circuit diagram explain the operation of Colpitt's Oscillator. (6+6)
 - b) In a transistor amplifier circuit, determine the voltage gain and the ac output voltage if $V_b = 100 \text{mV}$, $R_c = 1 \text{k} \Omega$ and $\text{re'} = 50 \Omega$
- 11. a) Explain the working of UJT as a relaxation oscillator and draw the wave form across a capacitor. (6+6)
 - b) A JFET has design circuit of 5mA. If $I_{DSS} = 10$ mA and $V_{GS}(OFF) = -6V$. Find the value of i) V_{GS}
 - ii) V_p.
- 12. Write short notes on any Two.

 $(2 \times 6 = 12)$

- a) Hartley Oscillator.
- b) Voltage regulator circuit.
- c) Voltage follower
- d) DC load line and bias power.