Roll No.		
		100

[Total No. of Pages: 2

PGIIIS-802 A-21 M.Sc. III Semester (CBCS) Degree Examination APPLIED ELECTRONICS

Microwave Eelectronics and Measurements

Paper: HCT - 3.2

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer the questions as per the instructions.
- 2. Write question numbers clearly.

PART-A

Answer any Eight of the following.

 $(8 \times 2 = 16)$

- 1. a) Mention the types of micostrip lines.
 - b) Mention the advantages and limitations of strip lines.
 - c) List the important factors in the selection of particular matching network.
 - d) What is meaning of double stub tuning?
 - e) Sketch a loop inductor of MIC.
 - f) With neat diagram mention the input and output of a power combining circuit.
 - g) Draw the mechanism of power divider of H plane waveguide Tee.
 - h) What do you understand about EMI and EME at microwave?
 - i) List any two microwave hazards.
 - j) Define quiet zone in anechoic chamber.

PART-B

Answer any Four of the following.

 $(4 \times 7 = 28)$

- 2. Explain clearly the structure of field lines in strip lines and microstrip lines.
- 3. With a neat circuit diagram explain the working of single stub tuning with series stub.
- 4. Explain in brief, the working of Chebyshev transformer.

PGIIIS-802 A-21/2021

(1)

[Contd....

PGIIIS-802 A-21 M.Sc. III Semester (CBCS) Degree Examination APPLIED ELECTRONICS

Microwave Eelectronics and Measurements

Paper: HCT - 3.2

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer the questions as per the instructions.
- 2. Write question numbers clearly.

PART-A

Answer any **Eight** of the following.

 $(8 \times 2 = 16)$

- 1. a) Mention the types of micostrip lines.
 - b) Mention the advantages and limitations of strip lines.
 - c) List the important factors in the selection of particular matching network.
 - d) What is meaning of double stub tuning?
 - e) Sketch a loop inductor of MIC.
 - f) With neat diagram mention the input and output of a power combining circuit.
 - g) Draw the mechanism of power divider of H plane waveguide Tee.
 - h) What do you understand about EMI and EME at microwave?
 - i) List any two microwave hazards.
 - j) Define quiet zone in anechoic chamber.

PART-B

Answer any Four of the following.

 $(4 \times 7 = 28)$

- 2. Explain clearly the structure of field lines in strip lines and microstrip lines.
- 3. With a neat circuit diagram explain the working of single stub tuning with series stub.
- 4. Explain in brief, the working of Chebyshev transformer.

- 5. Calculate the characteristic impedance and attenuation due to conductive loss and dielectric loss of a microstrip line which is composed of zero thickness copper conductors on a substrate having $E_e = 8.4$, $\tan S = 0.0005$, thickness = 2.4 mm of width 1mm operating at 10 GHz.
- 6. Explain the working of lange coupler with an illustration.
- 7. Discuss briefly about design consideration of oscillator.

PART-C

Answer any Three of the following.

 $(3 \times 12 = 36)$

- 8. With a neat diagram explain the working of resistive divider and discuss the mechanism of power available in each port under matched condition.
- 9. Discuss the design consideration of quarter wave transformer.
- 10. With a neat diagram, explain the coupled line directional couplers with even and odd mode excitation.
- 11. Discuss in detail, the design consideration of microwave broadband amplifier or oscillator.
- 12. Write short notes on any Two of the following.

 $(2 \times 6 = 12)$

- a. Matching with lumped elements.
- b. Free space attenuation.
- Wilkinson power divider.
- d. Microwave hazards.

PGIIIS-804 A-21 M.Sc. III Semester (CBCS) Degree Examination

APPLIED ELECTRONICS

Communication And Digital Electronics

Paper: OET - 3.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer the questions as per the instructions.
- 2. Write question numbers clearly.

PART-A

Answer any Eight of the following.

 $(8 \times 2 = 16)$

- 1. a) What are surface waves?
 - b) Define skip distance and critical frequency.
 - c) Define super heterodyne receiver.
 - d) What type of current is required to radiate EM wave from an antenna.
 - e) List the advantages of FM over AM.
 - f) Define photo detector.
 - g) What is LASER?
 - h) Convert (11101)₂ to a decimal number.
 - i) Draw the symbols of OR and AND gates and explain truth table.
 - j) Mention the truth tables of universal gates.

PART - B

Answer any Four of the following.

 $(4 \times 7 = 28)$

- 2. Discuss the effect of ionosphere on radio waves.
- 3. Give the qualitative description of Yago Uda antennas.
- 4. Derive the equation of modulation index in AM.

PGIIIS-804 A-21/2021

(1)

[Contd....

- 5. Explain the principles of light transmission through optical fiber.
- 6. With suitable example explain the use of 1's and 2's complement conversion.
- 7. Show the construction of NAND and NOR gates using basic gates.

PART - C

Answer any Three of the following.

 $(3 \times 12 = 36)$

- 8. Discuss in detail, the sky wave propagation.
- 9. Explain the generation and detection of AM waves.
- 10. Discuss the characteristics of step index and graded index profile of single mode fiber.
- 11. State and prove De-Morgan theorem and sketch logic diagrams and truth tables.
- 12. Write short notes on any Two of the following.

 $(2 \times 6 = 12)$

- a) Microstrip antenna.
- b) Advantage of modulation.
- c) Losses in fibers.
- d) Use of Boolean algebra.

Roll No.			

[Total No. of Pages: 2

PGIIIS-803 A-21

M.Sc. III Semester (CBCS) Degree Examination

APPLIED ELECTRONICS

Modern Digital Communication

Paper: SCT - 3.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer the questions as per the instructions.
- 2. Write question numbers clearly.

PART-A

Answer any Eight of the following.

 $(8 \times 2 = 16)$

- 1. a) Write the major goals for design of a digital communication system.
 - b) State the characteristics of line coding.
 - c) What are the main causes of ISI?
 - d) Define pulse modulation.
 - e) Mention the applications of PAM.
 - f) Using the Nyquist sampling theorem for a baseband signal, determine the sampling rate and Nyquist interval for an analog signal represented by $s(t) = 7\cos[124\pi t] + 20\cos[1000\pi t]$.
 - g) Define baseband transmission.
 - h) Define synchronization.
 - i) Sketch ASK, FSK and PSK modulated signal waveforms.
 - j) State the various digital modulation techniques.
 - k) Distinguish between coherent and noncoherent binary modulation.
 - 1) What do you mean by differential phase shift keying?

PART-B

Answer any Four of the following.

 $(4 \times 7 = 28)$

- 2. Draw a unipolar NRZ and RZ pulse diagram for a binary message 11010111.
- 3. Describe a basic TDM PCM system.

PGIIIS-803 A-21/2021

(1)

[Contd....

- 4. What do you mean by adaptive delta modulation? Mention its importance.
- 5. Explain the quantization, sampling and companding process during PCM.
- 6. Discuss the salient features of matched filter and optimum terminal filter.
- 7. With a state space diagram, describe the coherent binary PSK system.

PART-C

Answer any Three of the following.

 $(3 \times 12 = 36)$

8. i. Define AMI line coding. Explain with suitable example.

(5)

ii. Explain M-ary encoding.

(7)

- 9. Discuss the construction of delta modulator and demodulator.
- 10. Explain the significance of carrier recovery circuits.
- 11. Discuss Noncoherent Orthogonal Modulation technique.
- 12. Write short notes on any Two.

 $(2 \times 6 = 12)$.

- a. Pulse shaping.
- b. Differential PCM.
- c. Bit timing recovery.
- d. Coherent Quadrature modulation technique.