PGIIIS-803 B-19 M.Sc. III Semester (CBCS) Degree Examination APPLIED ELECTRONICS

Modern Digital Communication

Paper: SCT 3.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer the questions as per instructions
- 2. Write the question numbers clearly.
- 3. Draw figures wherever necessary.

PART-A

1. Answer any eight of the following:

 $(8 \times 2 = 16)$

- a. Define the terms binit, bit and baud. Which of these are symbols?
- b. Give pictorial format for RZ and NRZ pulse.
- c. Represent uni polar and polar line code for a binary stream 1001110101.
- d. Define DC Wander.
- e. Sketch a basic digital communication system.
- f. What is meant by probability of bit error in broadband transmission?
- g. Show a scheme for bit timing recovery.
- h. What is the purpose of carrier recovery circuit?
- Draw a binary modulated carrier for BASK, PRK and BFSK.
- j. What is orthogonal modulation?

PART-B

Answer any four of the following:

 $(4 \times 7 = 28)$

- 2. Explain the differential encoding of a binary message 110101.
- 3. Discuss M-ary encoding with M = 8 levels.
- 4. Define aliasing effect. Discuss the importance of sampling frequency on natural PAM.

[Contd....

- 5. Draw and Explain the eye diagram for examining a digital signal.
- 6. With a neat diagram, explain delta modulation.
- 7. Describe the coherent binary PSK.

Part - C

Answer any three of the following:

 $(3 \times 12 = 36)$

- 8. With a neat diagram, explain the pulse shaping to avoid ISI.
- 9. State the salient features of synchronization.
- 10. Describe the special cases of binary modulation in digital carrier systems.
- 11. Discuss the non coherent binary modulation techniques.
- 12. Write short notes on any two of the following:

 $(2 \times 6 = 12)$

- a. AMI line code
- b. Basic TDM/PCM system.
- c. The matched filter.
- d. Coherent quadrature modulation techniques.

[Total No. of Pages: 2

PGIIIS-801 B-19 M.Sc. III Semester (CBCS) Degree Examination APPLIED ELECTRONICS

Networks and Systems

Paper: HCT 3.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer the questions as per the instructions
- 2. Write the question number clearly.

PART-A

1. Answer any Eight of the following:

 $(8 \times 2 = 16)$

- a. Define network function for a passive network.
- b. Define poles and zeros and show the location of simple and complex conjugate poles and zeros in the s plane.
- c. Draw the pole zero diagram of a network function $F(s) = 3S/[(S+2)(S^2+2S+2)]$.
- d. What do you understand by state space and state vector?
- e. Why $S^5 + 4S^4 + 3S^3 + 2S^2 + S$ is not a positive real function?
- f. Define transfer function of a system.
- g. Write the Laplace inverse transform of a unit step function.
- h. List the advantage of second order over first order system.
- i. Define steady state error of a system.
- j. Define signal flow graph.

PART-B

Answer any Four of the following:

 $(4 \times 7 = 28)$

- 2. Explain the importance of location of poles and zeros in S plane.
- 3. List the properties of positive real of a network function.
- 4. A two terminal network consists of a coil having an inductance L and resistance R shunted by a capacitor C. The poles and zeros of the driving point function Z(s) of this network are: poles at -[(1/2)+j(sqr3)/2],-[(1/2)-j(sqr3)/2] and zeros at -(1+j0). If Z(j0)=1 determine the values of R, L and C.

PGIIIS-801 B-19/2019

(1)

Contd....

[Total No. of Pages: 2

PGIIIS-801 B-19 M.Sc. III Semester (CBCS) Degree Examination APPLIED ELECTRONICS

Networks and Systems

Paper: HCT 3.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer the questions as per the instructions
- 2. Write the question number clearly.

PART-A

1. Answer any **Eight** of the following:

 $(8 \times 2 = 16)$

- a. Define network function for a passive network.
- b. Define poles and zeros and show the location of simple and complex conjugate poles and zeros in the s plane.
- c. Draw the pole zero diagram of a network function $F(s) = 3S/[(S+2)(S^2+2S+2)]$.
- d. What do you understand by state space and state vector?
- e. Why $S^5 + 4S^4 + 3S^3 + 2S^2 + S$ is not a positive real function?
- f. Define transfer function of a system.
- g. Write the Laplace inverse transform of a unit step function.
- h. List the advantage of second order over first order system.
- i. Define steady state error of a system.
- j. Define signal flow graph.

PART-B

Answer any Four of the following:

 $(4 \times 7 = 28)$

- 2. Explain the importance of location of poles and zeros in S plane.
- 3. List the properties of positive real of a network function.
- 4. A two terminal network consists of a coil having an inductance L and resistance R shunted by a capacitor C. The poles and zeros of the driving point function Z(s) of this network are: poles at -[(1/2)+j(sqr3)/2],-[(1/2)-j(sqr3)/2] and zeros at -(1+j0). If Z(j0)=1 determine the values of R, L and C.

PGIIIS-801 B-19/2019

(1)

[Contd....

- 5. Derive the equation of time domain response of a first order system subjected to unit impulse.
- 6. Explain in detail, the importance of Mason's gain formula.
- 7. Derive the root locus plot of a system G(s) = K/(Ts+1) when H(s) = 1.

PART-C

Answer any Three of the following:

 $(3 \times 12 = 36)$

- 8. Draw the Foster I and II form of the networks from the transfer function: $F(S) = \frac{[(S+1)(S+2)(S+5)]}{[S(S+2)(S+4)(S+6)]}.$
- 9. A system represented by $Y^3 + 6Y^2 + 11Y + 6 = 6U$, where Y is the output and U is the input. Obtain the state space representation.
- 10. Obtain the root locus plot for the system represented by : G(s) = K/[S(S+1)(S+2)] when H(s) = 1.
- 11. With an example, explain the use of Nyquist stability criterion as applied to any control system.
- 12. Write short notes on any Two of the following:

 $(2 \times 6 = 12)$

- Significance of state variable approach.
- b. Properties of RC functions.
- c. Comparison of open and closed loop control systems.
- d. Control system applications.