Roll No. _____

[Total No. of Pages: 2

PGIIIS - N 1598 B - 14 M.Sc. IIIrd Semester (CBCS) Degree Examination Statistics (Statistical Methods) Paper - OET 3.1 (New)

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates:

Answer any Six questions from Part A and Five questions from Part B

 $Part - A (6 \times 5 = 30)$

- 1. Explain a sample Space along with examples
- 2. Write down the probability distribution of the sum of the numbers when two ideal dies are rolled once
- 3. Define binomial distribution and mention its applications
- 4. Describe the 't-test' for testing the mean of a normal distribution
- 5. Explain various types of Statistical hypothesis
- 6. Outline wileoxon's Signed ranks test
- 7. Explain the method of least squares
- 8. Explain the principles of experimentation

Part - B $(5 \times 10 = 50)$

- 9. a) State and prove Bay's Theorem
 - b) find the probability of getting at least one head when n ideal dies are rolled once.

(5+5)

- 10. a) State and prove addition rule of probability
 - b) There are three supermarkets S_1, S_2 and S_3 in a city. The respective percentages of defective items in S_1, S_2, S_3 are 10,11 and 12. A customer randomly enters a supermarket and choosen an item. What is the probability that it is a good item?

(5+5)

11.	a)	Explain the terms			
		i) Types of test procedures and			
		ii) Types of errors in testing of hypothesis.			
	b)	Outline the steps in writing an optimum test (5+5)			
12.	a)	The height of men of a certain tribe is normally distributed with variance $64ft^2$. A random—sample of 50 men of that tribe gave an average height of 5.8 feet. At 5% level, can we conclude that the average height in the population is 5.9 feet given that $P(Z >1.96)=0.05$			
	b)	Explain the 'chi-Square test' for testing about the variance When the mean of a normal population is given (5+5)			
13.	a)	Discuss 'Paired t-test'.			
	b) Explain a test for comparing the variances of two independent normal po				
		(5+5)			
14.	a)	What are nonparametric tests? What are their merits and demerits?			
	b)	Discuss a test for testing the association between two attributes in a contingency table (5+5)			
15.	a)	Explain linear correlation with examples			
	b)	The following is a random sample from a distribution with median M. Compute the value of wileoxon signed ranks test statistic under $H_0: \mu = 5, 6, 7, 4, 8, 9, 8$ (5+5)			
16.	Write short notes on any two of the following				
	a)	LSD			
	b)	Poisson distribution			
	c)	Coefficient of Variation			

U-test

d)

(5each)

Roll No.

[Total No. of Pages: 2

PGIIIS - N 1596 B - 14 M.A./M.Sc. IIIrd Semester (CBCS) Degree Examination Statistics (Design and Analysis of Experiments) Paper - HCT 3.2 (New)

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates:

Answer any **Six** questions From part - A and **Five** questions from part - B

Part - A $(6 \times 5 = 30)$

- 1. Given the model: $E(y_1) = \theta_1 + 2\theta_2$, $E(y_2) = 2\theta_1 + \theta_2$ and $E(y_3) = \theta_1 \theta_2$ Examine the estimability of $\theta_1 + \theta_2$.
- 2. Define BLUE of a linear parametric function (lpf) Show that it is unique
- 3. Describe any one method of multiple comparison tests.
- 4. Define BIBD. Show that it is a variance balanced design
- 5. Outline yates' technique for a 2³ Factorial experiment
- 6. Explain the principle of confounding in factorial experiments. Mention its types.
- 7. What is analysis of Covariance? When is it used?
- 8. What are split plot designs? Give a practical Situation where there designs are used.

Part - B $(5 \times 10 = 50)$

- 9. Derive the BLUE of an estimable linear parametric function in a Gauss-Markov (G-M) model
- 10. a) Derive the least square estimators of the parameters in a RBD model.
 - b) Obtain an estimator of a single missing Observation in a RBD. (5+5=10)

- 11. Write down the linear model for a mxm LSD. Obtain the normal equations. How will you test for differences among the treatments?
- 12. State and prove the parametric relations of BIBD.
- 13. a) Describe a test procedure for testing $H_0: a^1\theta = 0$ where $a^1\theta$ is an estimable l.p.f. In a G-M model (5+5=10)
 - b) Derive a necessary and sufficient condition for the estimability of a lpf.
- 14. Explain comple Confounding in factorial experiments. Discuss the analysis of a completely confounded factorial experiment
- 15. Discuss the analysis of a split plot design with main treatments arranged in randomized blocks.
- 16. Describe one way random effect model. obtain the estimates of the variance components of this model.

[Total No. of Pages: 2

PGIIIS - N 1597 B - 14 M.Sc. IIIrd Semester (CBCS) Degree Examination Statistics (Demography) Paper - SCT 3.1(a) (New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer any Six questions from part - A and Five questions from part - B All questions carry equal marks

 $Part - A (6 \times 5 = 30)$

- 1. Explain Whipple's index of identifying digit preference in age reporting
- 2. Explain the sources of demographic data
- 3. Define and explain crude birth rate
- 4. What are the reproduction measures? Explain
- 5. Define a life table State the assumptions for constructing a life table
- 6. With usual notations show that $\mu_x = \frac{1}{l_x^0} \left[1 + \frac{d}{dx} l_x^0 \right]$
- 7. Define curative expectation of life (l_x) . How is it related to the probability of survivals
- 8. Explain various methods of migration push and pull factors of migration

Part - B $(5 \times 10 = 50)$

- 9. a) Explain Chandrasekaran and doming method to ascertain completeness of vital statistics registration
 - b) Explain UN index of measuring tendentious bias

(5+5)

- 10. Discuss different measures of fertility
- 11. Discuss different types of mortality (10)

(10)

- 12. Derive Dandikar's modified Poisson distribution fertility model (10)
- 13. a) Define crude death rate and age specific death rate
 - b) Define infant mortality rate (IMR). Explain lexis diagram of infant mortality rate (5+5)
- 14. a) With usual notations prove that $nv_x = \frac{nn^m x}{1 + (n n^2 x)n^m x}$ When $n^2 x$ is the average number of years lived in (x, x+n) from those who did in it

b) With usual notations, show that
$$nv_x = \frac{2nn^m x}{2 + nn^m x}$$
 (5+5)

- 15. Explain Reed and Merrel method of constructing a life table. Show that this method is a particular case of Greville's method. (10)
- **16.** a) Define migration. Explain push and pull factor of migration
 - b) Discuss the impact of migration on population size and structure (5+5)

[Total	No	of Pages	•	2
IIULAI	LYU.	ULLARES	٠	and the

Roll No.

PGIIIS - N 1595 B - 14 M.A./M.Sc. IIIrd Semester (CBCS) Degree Examination

Statistics

(Stochastic Process)
Paper - HCT 3.1

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer any Six questions from Part-A and Five questions

from Part-B

Part - A

 $(6 \times 5 = 30)$

- 1. Define Markov process, Stationary process and gaussian process
- 2. Define aperiodic State, reducible state and ergodic State
- 3. Discuss spectral decomposition method of obtaining higher step transition probabilities
- 4. Discuss briefly the compound poisson process
- 5. Show that the mean population give of birth and death process is $M(t) = i e^{(\lambda \mu)t}$
- 6. Obtain a backward diffusion equation of a wiener process
- 7. Show that the renewal function M(t) Satisfies the equation $M(t) = F(t) + \int_0^t M(t-x)dF(x)$
- 8. Explain Branching process

Part - B

 $(5\times10=50)$

- 9. State and prove Ergodic theorem of a Markov Chain
- 10. Show that if state j in persisted non null then as $n \to \infty$
 - i) $P_{ij}^{(nt)} \rightarrow \frac{t}{\mu_{ij}}$, When state j in Periodic with Period t
 - ii) $P_{ij}^{(n)} \rightarrow \frac{1}{\mu_{ij}}$, When State j in aperiodic

- iii) $p_{ii}^{(n)} \rightarrow 0$, as $n \rightarrow \infty$, When State j in perssistent null
- 11. Obtain Pn for two state Markov chain having t.p.m.

$$P = \begin{pmatrix} 1-a & a \\ b & 1-b \end{pmatrix}, 0 < a, b < 1$$

- 12. Define Poisson process and show that if $\{N(t), t \ge 0\}$ is a Poisson process then the auto correlation coefficient between N(t) and N(t+S) is $(t/t+S)^{1/2}$
- 13. Obtain the probability distribution function of Yule -Furry process
- 14. Obtain the first passage time distribution for wiener process
- **15.** State and prove CLT for the renewal process $\{N(t), t \ge 0\}$
- **16.** For a branching process $\{X_n, n \ge 0\}$ if m = 1 and $\sigma^2 < \infty$ then show that

$$\lim_{n \to \infty} P\{\frac{x_n}{n} > u/x_n = 0\} = \exp\left(-\frac{2\mu}{\sigma^2}\right), u \ge 0$$