#### PGIS-N 1018 B-15

## M.Sc. Ist Semester (CBCS) Degree Examination

Mathematics

(Real Analysis)

Paper: HCT 1.1

(New)

Time: 3 Hours

Maximum Marks: 80

# Instructions to Candidates:

- 1) Answer any Five questions.
- 2) All questions carry equal marks.
- a) Define Riemann steiltje's integrals and describe their existance. Prove that f is integrable with respect to α over [a,b] iff for every ε>0 and for every partition P of [a,b] such that U(p, f, α) L(p, f, α) < ε</li>
  - b) If  $f \in \mathbb{R}(\alpha_1)$  and  $f \in \mathbb{R}(\alpha_2)$  then show that  $f \in \mathbb{R}(\alpha_1 + \alpha_2)$  and  $\int_a^b f d(\alpha_1 + \alpha_2) = \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2$  and if  $f \in \mathbb{R}(\alpha)$  and 'c' is a positive constant then prove that  $f \in \mathbb{R}(c\alpha)$  and  $\int_a^b f d(c\alpha) = c \int_a^b f d\alpha$  (8+8)
- **2.** a) If f is monotonic on [a,b] and  $\alpha$  is continuous on [a,b] then show that  $f \in \mathbb{R}(\alpha)$ .
  - b) State and prove the first mean value theorem. (8+8)
- 3. a) Define the meaning of functions of bounded variation. Show that a bounded monotonic function is a function of bounded variation.
  - b) State and prove the fundamental theorem of calculus. (8+8)
- 4. a) If  $\{f_n\}$  be a sequence of functions such that  $\lim_{n\to\infty} f_n(x) = f(x), x \in [a,b]$  and let  $M_n = \sup |f_n(x) f(x)|, x \in [a,b]$  then prove that  $f_n \to f$  uniformly on [a,b] if and only if  $M_n \to 0$  as  $n \to \infty$ .

- b) If a series  $\sum_{n=1}^{\infty} f_n$  converges uniformly to f in [a,b] and  $x_0$  is a point in [a,b] such that  $\lim_{x \to x_0} f_n(x) = a_n, n = 1, 2, 3, \dots$  then prove the followings:
  - i)  $\sum_{n=1}^{\infty} a_n \text{ Converges.}$ ii)  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n$ (8+8)
- 5. a) If a series  $\Sigma f_n$  converges uniformly to f in an interval [a,b] and its terms  $f_n$  are continuous at a point  $x_0$  of the interval then prove that the sum function f is also continuous at  $x_0$ .
  - b) If K is a compact metric space, if  $f_n \in \mathcal{L}(S)$  for n = 1, 2, 3, ....., and if  $\{f_n\}$  Converges uniformly on K then show that  $\{f_n\}$  is equi continuous on k. (8+8)
- 6. State and prove the stone weierstrass theorem. (16)
- 7. a) Prove the followings:
  - i) If  $T \in L(\mathbb{R}^n, \mathbb{R}^m)$ , then  $||T|| < \infty$  and T is a uniformly continuous mapping of  $\mathbb{R}^n$  into  $\mathbb{R}^m$ .
  - ii) If  $T, S \in L(R^n, R^m)$  and C is a scalar, then  $||T + S|| \le ||T|| + ||S||$ ||CT|| = |C| ||T||
  - iii) If  $T \in L(R^n, R^m)$  and  $S \in L(R^m, R^k)$  then  $||ST|| \le ||S|| ||T||$
  - b) If f is a function of class  $C^{(1)}$  then prove that f is a differentiable function. (8+8)
- 8. State and prove the implicit function theorem. (16)

| Roll No.    |  |  |
|-------------|--|--|
| ILUII . TU. |  |  |

[Total No. of Pages: 2

#### PGIS-N 1020 B-15

# M.A/M.Sc Ist Semester (CBCS) Degree Examination

**Mathematics** 

(Algebra - I)

Paper - HCT 1.2

(New)

Time: 3 Hours Maximum Marks: 80

#### Instructions to Candidates

- 1. Answer any **five** full questions
- 2. All questions carry **equal** marks.
- 1. a) Prove that any subgroup of an infinite cyclic group is also infinite cyclic. Also prove that an infinite cyclic. Group has exactly two generators (8)
  - b) Show that every permutation  $\sigma \in S_n$ , where  $S_n$  is the symmetric group and it can be expressed as a product of disjoint cycles. (8)
- 2. a) State and prove Cayley's theorem

(8)

b) Derive the class equation for finite group.

(8)

- 3. a) Prove that a group G is solvable if and only if  $G = \{e\}$  for some  $n \ge 1$  (8)
  - b) Show that a group of prime order is solvable. Also prove for a group G with K normal subgroup such that both K and G/K are solvable, then G is solvable. (8)
- 4. Prove that every integrable domain can be embedded in a field. (16)
- 5. a) Let R be an Euclidean domain then show that for any  $a \in R$  Which is not a unit can be expressed as a product of irreducible elements (8)
  - b) If R is commutative ring with unit element, then show that R[x] is also commutative ring. If R is an integral domain then prove that R[x] is also an integral domain. (8)



(8)

Show that if F is a field, then F [x] is a Euclidean domain

6.

8. a) Let  $f(x) \in F[x]$  be of degree n. Then show that f(x) has a splitting field. (8)

Let K/F and L/K be algebraic extension then prove that L/F is an algebraic extension(8)

b) For a finite field F with P<sup>n</sup> elements. Prove that F has a subfield F' with P<sup>m</sup> elements if and only if m divides n. (8)

| Roll | No. |  |
|------|-----|--|
|      |     |  |

[Total No. of Pages: 2

# PGIS-N 1029 B-15 M.Sc. Ist Semester (CBCS) Degree Examination **Mathematics** (General Topology) Paper - HCT - 1.5 (New)

Time: 3 Hours Maximum Marks: 80

## Instructions to Candidates.

- Answer any five full questions.
- All questions carry equal marks. 2)
- 1. Define a topology  $\tau$  on a non-empty set X. Let  $\mu$  consist of  $\phi$  and all those subset G a) of a real line  $\mathbb{R}$  such that to each  $x \in G$  there exists  $\in > 0$  such that  $(x - \in, x + \in) \subset G$ . Then show that  $\mu$  is a topology on  $\mathbb{R}$ 
  - using the Kuratowski's closure axioms in a topological space X, then prove that there b) exists a topology  $\tau$  on x such that  $C(A) = \overline{A}$ (8)
- 2. Define neighbourhood of a point. Prove that a subset G of a space X is open iff it is a) a neighborhood of its points. (8)
  - If A is a subset of a space X then prove the followings: b)
    - (8)
    - $A \cup D(A)$  is closed. 1)
    - ii)  $\overline{A} = A \cup D(A)$
- Define base for a topology. Then prove the following two properties on a base  $\beta$  are 3. a) equivalent: (8)
  - $\beta$  is a base for  $\tau$ . i)
  - For each  $G \in \tau$  and  $P \in G$  there is  $U \in \beta$  such that  $P \in U \subset G$ ii)
  - Let X, Y be the topological spaces and  $f: X \to Y$  be a mapping then show that f is b) closed iff  $\overline{f(A)} \subset f(\overline{A})$  for  $A \subset X$ . (8)

- 4. a) Define a T<sub>2</sub>- space. If a topological space X is T<sub>2</sub> and f: X → Y is a closed bijection then show that y is also a T<sub>2</sub>-space. (8)
  b) Prove the following properties of a regular space are equivalent:

  i) X is regular
  ii) For each P∈ X and an open set U containing P, there is an open set V such that P∈ V ⊂ U
  iii) For each P ⊂ Y and a closed set F not containing P, there is an open set V
  - iii) For each  $P \in X$  and a closed set F not containing P, there is an open set V such that  $P \in V$  and  $\overline{V} \cap F = \emptyset$ . (8)
- 5. a) Define a normal space. Show that normality is a topological property. (8)
  - b) Define separable space. Show that every 2°- countable space is separable. (8)
- 6. a) Define a connected space. Prove that the following conditions are equivalent:
  - i) The space X is connected.
  - ii) The only subsets of X which are both open and closed are  $\phi \& X$
  - iii) No continuous mapping  $f: X \to \{0,1\}$  is subjective. (8)
  - b) If {A<sub>α</sub> : α ∈ D} be a family of connected subsets of a space X such that one of the members of this family intersects every other member then prove that U{A<sub>α</sub> : α ∈ D} is connected.
     (8)
- 7. a) Define a compact space. If A be a compact subset of a hausdorff space X and  $P \notin A$  prove that there exists disjoined open sets U & V such that  $P \in V$  and  $A \subset U$ . (8)
  - b) Prove that the space X is compact if and only if every collection of closed sets with finite intersection property has a non empty intersection. (8)
- 8. a) Define a metric space. Show that in any metric space the set of all open spheres is a base for topology on X.(8)
  - b) Prove that a metric space is Lindelof if and only if it is 2° countable. (8)

| Roll No. |  |  |
|----------|--|--|
|          |  |  |

|Total No. of Pages: 2

# PGIS - N 1026 B - 15 M.A/M.Sc Ist Semester (CBCS) Degree Examination Mathematics (Classical Mechanics) Paper - SCT 1.1 (New)

Time: 3 Hours Maximum Marks: 80

#### **Instructions to Candidates**

- 1. Answer any **five** full questions
- 2. All questions carry **equal** marks.
- 1. a) What are different kinds of constraints of dynamical system explain. (8)
  - b) State and prove D'Alembert's principle. (8)
- 2. a) Deduce Lagronge's equation for impulsive motion. (8)
  - b) Derive energy equation for impulsive motion. (8)
- 3. a) Construct Lagragian and hence equation of motion of a simple pendulum placed in a uniform gravitational field.(8)
  - b) Define rigid body. Find the momentum inertia and product inertia of a body at O. (8)
- 4. a) Explain transformations associated with Eulerian angles. (8)
  - b) A symmetrical top can turn freely about a fixed point in its axis of symmetry and is acted on by forces derived from the potential function  $\mu \cot^2 \theta$ ,  $\theta$  is the angle between this axis and a fixed line, say O Z. Show that the equation of motion can be integrated in terms of elementary functions. (8)

|    | b) | State lee How - Chung theorem and discuss poincare integral invariant                 | (8)   |
|----|----|---------------------------------------------------------------------------------------|-------|
| 6. | a) | Obtain Hamilton - Jacobi equations for simple harmonic motion and find a comp         | lete  |
|    |    | integral and determine solution of it.                                                | (8)   |
|    | b) | Prove that F,G are both integrals of motion, them so is their POISSON bracket.        | (8)   |
| 7. | a) | A particle of mass m is falling under gravity. Solve for the motion of the particle u | sing  |
|    |    | canonical transformation                                                              | (8)   |
|    | b) | Prove that lagrange's bracket is invariant under canonical transformation.            | (8)   |
| 8. | a) | Show that Lagrange's bracket donot obey the commutative law. Also prove               | e the |
|    |    | fundamental Lagranges bracket.                                                        | (8)   |
|    | b) | Find the relationship between lagrange's and poissons bracket                         | (8)   |
|    |    |                                                                                       |       |
|    |    |                                                                                       |       |
|    |    |                                                                                       |       |
|    |    |                                                                                       |       |

Derive hamilton's canonical equation from hamilton's principle

(8)

5.

Roll No. \_\_\_\_\_ [Total No. of Pages: 2

## PGIS-N 1028 B-15 M.A./M.Sc. Ist Semester (CBCS) Degree Examination

### Mathematics

(Fuzzy Sets and Fuzzy Systems)
Paper - SCT - 1.2

(New)

Time: 3 Hours Maximum Marks: 80

#### Instructions to Candidates.

- 1) Answer any five questions
- 2) All questions carry equal marks.
- 1. a) State and prove the De-Morgans laws for crisp sets (6)
  - b) Define a fuzzy set and explain with suitable examples (5)
  - c) What is the support of a fuzzy set? Explain with example (5)
- 2. a) Following are the fuzzy sets defined on the set  $X=\{5,10,20,30,40,50,60,70,80\}$  of ages

Adult = 
$$\frac{0.8}{20} + \frac{1}{30} + \frac{1}{40} + \frac{1}{50} + \frac{1}{60} + \frac{1}{60} + \frac{1}{80}$$

Young = 
$$\frac{1}{5} + \frac{1}{10} + \frac{0.8}{20} + \frac{0.5}{30} + \frac{0.2}{40} + \frac{0.1}{50}$$

Old = 
$$\frac{0.1}{20} + \frac{0.2}{30} + \frac{0.4}{40} + \frac{0.6}{50} + \frac{0.8}{60} + \frac{1}{70} + \frac{1}{80}$$
. Find compliment of 'Adult' and verify that

- b) Prove that a fuzzy set A on  $\mathbb{R}$  is convex iff  $A(\lambda x_1 + (1 \lambda)x_2) \ge \min(A(x_1), A(x_2))$  for all  $x_1, x_2 \in \mathbb{R}$  and  $\lambda \in [0,1]$  (8)
- 3. a) If  $A, B \in F(X)$  then prove that the following properties hold for all  $\alpha \in [0,1]$

i) 
$$\alpha^{+}(A \cap B) = \alpha^{+}A \cap \alpha^{+}B$$

ii) 
$$\alpha^{+}(A \cup B) = \alpha^{+}A \cup \alpha^{+}B$$

- b) If A. B are the two fuzzy sets defined on the universal set X then prove that the following properties hold for all  $\alpha \in [0,1]$ 
  - i) A=B iff  $\alpha_A = \alpha_B$
  - ii) A=B iff  $\alpha$   $A = \alpha$  B
- 4. a) State and prove first decomposition theorem (8)
  - b) Write the axiomatic definition of fuzzy complement and show that the fuzzy complement defined by  $C_{\lambda}(a) = \frac{1-a}{1+\lambda a}$  for all  $a \in [0,1]$  and  $\lambda \in (-1,\infty)$  is a involutive fuzzy complement. (8)
- fuzzy complement. (8)

  5. a) Prove that every fuzzy complement has at most one equilibrium (8)
  b) Define Archimedian t-norm and show that the standard fuzzy intersection is the only

(8)

- idempotent t-norma) If i<sub>w</sub> denote the class of yager t-norms defined
- by  $i_w(a,b) = 1 \min\left(1, \left[ (1-a)^w + (1-b)^w \right]^{\frac{1}{w}} \right)$ , w>0 then prove that  $i_{\min}(a,b) \le i_w(a,b) \le \min(a,b) \text{ for all } a,b \in [0,1]$  (8)
  - b) Define Archimedian t-conorm and prove that the yager class of t-conorms covers the whole range of t-conorms (8)
- 7. a) Given a t-norm i and an involutive fuzzy complement C, then prove that the binary operation u on [0,1] defined by u(a,b) = c(i(c(a),c(b))) for all  $a,b \in [0,1]$  is a t-conorm such that  $\le i,u,c > is$  a dual triple (8)
- b) Define a fuzzy number and explain the concept of "large number" and "small number" with suitable example (8)
- **8.** Write notes on the following
  - i) Linguistic variables
  - ii) Arithmetic operation on fuzzy numbers
  - iii) Fuzzy equations (6+5+5)