Roll No.

PGIS-N 1018 B-14

M.A./M.Sc. Ist Semester (CBCS) Degree Examination Mathematics (Real Analysis) Paper - HCT- 1.1 (New)

Time: 3 Hours

Maximum Marks: 80

Instructions to candidates:

- i) Answer any **five** questions
- ii) All questions carry equal marks.
- a) Define Riemann-steiltje's integrals and describe their existence. Prove that f is integrable with respect to α over [a,b] iff for every ∈> 0 and for every partition P of [a,b] such that U(P,f,α)-L(P,f,α)<E
 - b) Prove that if $f_1 \in \mathbb{R}(\alpha)$, $f_2 \in \mathbb{R}(\alpha)$, over [a,b] then $f_1 + f_2 \in \mathbb{R}(\alpha)$ and

$$\int_{a}^{b} f_1 + f_2 d\alpha = \int_{a}^{b} f_1 d\alpha \int_{a}^{b} f_2 d\alpha \tag{8}$$

2. a) Define integral as a limit of a sum. If $\lim S(p, f, \alpha)$ exists as $\mu(p) \to 0$ then prove

that
$$F \in \mathbb{R}(\alpha)$$
 and $\lim_{\mu(p)\to 0} S(p,f,\alpha) = \int_{a}^{b} f d\alpha$ (8)

- b) State and prove the first mean value theorem.
- (8)
- 3. a) Define the meaning of functions of bounded variation. Show that the product of two functions of bounded variation is also of bounded variation. (8)
 - b) If $F \in \mathbb{R}$ on [a,b] and $F(x) = \int_{a}^{x} f(t)dt$ for $a \le x \le b$ then prove that F is continuous on [a,b]. Also prove that if f is continuous at a point x_0 of [a,b] then F is differentiable at x_0 and $F^1(x_0) = f(x_0)$ (8)
- 4. a) Prove that a sequence of functions $\{f_n\}$ defined on [a,b] converges uniformly on [a,b] if and only if for every $\in > 0$ and for all $x \in [a,b]$ there exists an integer N such that

$$|f_n + p(x) - f_n(x)| < \in \forall n \ge N, P \ge 1$$

[Contd....

(8)

b) If a series $\sum_{n=1}^{\infty} f_n$ converges uniformly to f in [a,b] and x_0 is a point in [a,b] such that $\lim_{x \to x_0} f_n$ (x) = a_n , n = 1,2,3,...

then prove that

i) $\sum_{n=1}^{\infty} a_n$ converges

ii)
$$\lim_{x \to x_0} f(x) = \sum_{n=1}^{\infty} an$$
 (8)

5. a) Define uniform convergence in a series. Show that the series

$$x^{4} + \frac{x^{4}}{1+x^{4}} + \frac{x^{4}}{\left(1+x^{4}\right)^{2}} + \frac{x^{4}}{\left(1+x^{4}\right)^{3}} + \dots$$
 (8)

b) If $\{f_n\}$ be a sequence of functions, differentiable on [a,b] and $\{f_n(x_0)\}$ converges at $x_0 \in [a,b]$. If $\{f'_n\}$ converges uniformly on [a,b] to f' then prove that $\{f_n\}$ converges uniformly on [a,b] to a function f and

$$f'(x) = \lim_{n \to \infty} f'(x), \ a \le x \le b$$
 (8)

- 6. State and the stone-Weierstrass theorem. (16)
- 7. a) Prove the followings:
 - i) If $T \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $||T|| < \infty$ and T is a uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m
 - ii) If $T, S \in L(R^n, R^m)$ and C is a scalar, the $||T + S|| \le ||T|| + ||S||$, ||CT|| = |C|||T||

iii) If
$$T \in L(\mathbb{R}^n, \mathbb{R}^m)$$
, and $S \in L(\mathbb{R}^m, \mathbb{R}^k)$ then $||ST|| \le ||S|| ||T||$ (8)

- b) If a function f be such that $(n-1)^{th}$ derivative f^{n-1} is continuous in [a,a+h] and its derivative f^n exists in [a,a+h]. Prove that the functions $f, f', f'', \dots, f^{n-1}$ exists and are continuous in [a,a+h] while f^n exists in [a,a+h] (8)
- 8. State and prove the inverse function theorem. (16)

Roll No.

[Total No. of Pages: 2

PGIS - N 1026 B - 14 M.A./M.Sc. Ist Semester Degree Examination Mathematics (Classical Mechanics) Paper - SCT 1.1 (New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) Answer any five questions
 - 2) All questions Carry equal Marks
- 1. a) Deduce Lagrange's equation from D'Alemberts principle.
 - b) Construct Lagragian and the equations of motion of a coplanar double pendulum placed in a uniform gravitational field 6
- 2. a) Obtain hamilton's equation of a motion of a particle in a plane referred to a moving axes, where the components of velocities are $u = x \omega y, v = y + \omega x$ 8
 - b) Find Euler's dynamical equations of the motion of a rigid body about a fixed point on the about a fixed point on the body 8
- 3. a) Show that

$$M_z = \frac{\partial L}{\partial \dot{\phi}_i} \text{ for a system with } L = \frac{1}{2} m_i \left(\dot{r}_i^2 + r_i^2 \phi_i^2 + \dot{Z}_i^2 \right) - v(r)$$

- b) A Symmetrical top can turn freely about a fixed point in its axis of symmetry and is acted on by forces derived from the potential function $\mu Cot^2\theta$, θ is the angle between this axis and a fixed line, say OZ. show that the equation of motion can be integrated in terms of elementary functions.
- 4. a) State hamilton's principle of least action and derive hamilton's canonical equation from hamilton's principle.
 - b) Derive poincare integral invariant

8

- 5. a) State Lee Haw-Chung theorem Obtain Jacobis equations by using Whittakeris equation.
 - b) Obtain hamiltun jacobi equations for simple harmonic motion and find a complete integral and determine solution of it.

8

8

8

- 6. a) Show that if F,G are both integrals of motion, then so is their poisson bracket 8
 - b) Prove that the transformation given by $q = \sqrt{2P} SinQ$, $p = \sqrt{2P} CosQ$ is canonical by using poisson brackets.
- 7. a) Find the value of q and p for a harmonic oscillator described by hamilton $H = \frac{1}{2}(p^2 + \omega^2 q^2) \text{ And generated by the function } F = \frac{1}{2}\omega q^2 Cot 2\pi Q$
 - b) Show that Langrange's brackets is invariant under canonical transformation 8
- 8. a) Show that langrange's bracket do not obey the commutative law. Also prove that

i)
$$\{q_p, q_j\} = 0$$

ii)
$$\{p_i, p_i\} = 0$$

iii)
$$\{q_i, p_j\} = \delta_{ij}$$

b) Establish the relationship between Lagrange's and Poisson's bracket

Roll No.	[Total No. of Pages:

PGIS-N 1020 B-14 M.A./M.Sc. Ist Semester (CBCS) Degree Examination Mathematics (Algebra-I) Paper - HCT-1.2 (New)

Tim	e:3 E	Hours Maximum Marks	3:80
Insi	ructio	ons to candidates:	
	i)	Answer any five questions	
	ii)	All questions carry equal marks.	
1.	a)	Let G be a finite cyclic group of order n . Then show that G has a unique subgrounder d for every divisor d of n .	up of (8)
	b)	Show that S_n is a finite group of order $\lfloor n \rfloor$ and is non-abelian if $n > 2$.	(8)
2.	a)	Let G be a finite group of order n. Then show that G is isomorphic to a subgroup S_n	p of (8)
	b)	Let G be a group and $a \in G$. Then show that the number of elements in the conjugate class $G(a)$ is equal to the index of the normaliser $N(a)$ of a in G	(8)
3.	a)	Let G be a finite group of order Pq, P and q being distinct primes, and P <q. show="" td="" that<="" the=""><td>n</td></q.>	n
		i) G has a unique sylow q-Subgroup	
		ii) If P does not divide q-1, G has a unique Sylow' P-Subgroup, and then G is cyclic of order Pq.	s (8)
	b)	Define solvable group. Show that	
		i) any subgroup of a solvable group is solvable	
		ii) any quotient group of a solvable group is solvable.	(8)
4.	Pro	ve that every integral domain can be embedded in a field	(16)
5.	a)	State and prove unique factorisation theorem	(8)
	b)	If R is a commutative ring with unit element, then show R[x] is also a commutating. If R is an integral domain show that R[x] is also an integral domain.	tive (8)

2

- 6. a) Let R be a unique factorisation domain and F the quotient field of R. Let $f(x) \in R(x)$ be irreducible in R[x]. Then show that f(x) is also irreducible in F[x] (8)
 - b) State and prove first isomorphism theorem for rings. (8)
- 7. a) Prove that $M_i = M_1 \oplus M_2 \oplus + \dots \oplus M_n$ is an R module iff
 - i) $M = M_1 + M_2 + ... + M_n$ and
 - ii) $M_1 \cap (M_1 + M_2 + ... + M_{i-1} + M_{i+1} M_n) = 0 \bowtie i, 1 \le i \le n$ (8)
 - b) Let K/F be a finite extension. Then show that K/F is an algebraic extension. (8)
- 8. a) Let $f(x) \in F[x]$ be of degree n. Then show that f(x) has a splitting field (8)
 - b) Let F be a finite field with Pⁿ elements. Then show that F has a subfield F¹ with P^m elements iff m divides n. (8)

PGIS - N 1022 B - 14

M.A./M.Sc. Ist Semester (CBCS) Degree Examination Mathematics

(Ordinary differential Equations) Paper - HCT-1.3

(New)

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates:

Answer any five questions

All questions Carry equal Marks

- 1. a) For any real x_0 and constants α, β Show that there exists a solution of the initial value problem $y^{11} + a_1 y^1 + a_2 y = 0$ with $y(x_0) = \alpha, y^1(x_0) = \beta \ on - \infty < x < \infty$
 - Prove that two solutions ϕ_1, ϕ_2 of L(y) = 0 are linearly independent on an interval I if b) 8 and only if $W(\phi_1, \phi_2)(x) \neq 0$ for all x in I
- If $\alpha_1, \alpha_2, \dots, \alpha_n$ are any n constants and x_0 be any real number then prove that there 2. exists a solution ϕ of L(y) = 0 on $-\infty < x < \infty$ Satisfying $\phi(x_0) = \alpha_1, \phi^1(x_0) = \alpha_2, \dots$ $\phi^{(n-1)}(x_0) = \alpha_n$
 - If ϕ_1, ϕ_2 are two solutions of $y^{11} + a_1 y^1 + a_2 y = 0$ in an interval I containing a point x_0 b) then prove that $W(\phi_1, \phi_2)(x) = e^{-a_1(x-x_0)} W(\phi_1, \phi_2)(x_0)$
- 3. Define Green's function. Explain the method of finding green's function 8 a)
 - Find the Green's function corresponding to differential Operator $L = \frac{d^2}{dx^2}$ with b) boundary conditions. y(0) = o, y(1) = 0.
- 4. a) State and prove sturm's separation theorem
 - Show that the boundary value problem $\frac{d^2y}{dx^2} + \lambda y = 0$ Where x(0) = 0, $x(\pi) = 0$ is a b) sturm Liouville problem

8

8

8

8

8

8

- a) Define characteristic values and characteristic functions and find characteristic values and characteristic functions of $\frac{d}{dx} \left[x \cdot \frac{dy}{dx} \right] + \frac{\lambda}{x} y = 0$
 - With $y^{1}(1) = 0, y^{1}(e^{2\pi}) = 0, \lambda \ge 0$
- b) Define adjoint and self adjoint equation. Further transform the following equation in to an equivalent self-adjoint equation $x^2y^{11} 2xy^1 + 2y = 0$
- 6. a) Derive Picard's method of Successive approximations for the initial value problem $y' = f(x, y), y(x_0) = y_0$
 - b) Find the third approximation using picards method of the

5.

equation
$$\frac{dy}{dx} = Z$$
, $\frac{dz}{dx} = x^3(y+z)$ where $y = 1$, $Z = \frac{1}{2}at$ $x = 0$

- 7. a) Write short note on Lipschitz, condition 4
 - b) State and prove picard's existence theorem for the initial value problem

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$$

- 8. a) Explain the method of solving Riccati's equation when its one particular integral is known
 - b) Solve the equation $x^2y_1 + 2 2xy + x^2y^2 = 0$

Roll No.	

[Total No. of Pages: 3

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer any Five questions
- 2. All questions carry equal marks
- a) Define a fuzzy set and convexity of fuzzy set. Prove that a fuzzy set A on R is convex if and only if A(λx₁ + (1-λ)x₂) ≥ min [A(x₁), A(x₂)] for all x₁, x₂ ∈ R and all λ∈ [0,1] where min denote the minimum operator.
 - b) Define the following and give an example of each
 - i) Strong α Cut
 - ii) Support set
 - iii) Level Set
 - iv) Convex fuzzy set (8)
- 2. a) Define a power fuzzy set. If $A, B \in f(x)$, then prove that, the following properties hold for all $\alpha \in [0,1]$ (8)
 - i) $\alpha(A \cap B) = \alpha A \cap \alpha B$
 - ii) $\alpha_+(A \cup B) = \alpha_+A \cup \alpha_+B$
 - b) State and prove the first decomposition theorem.

(8)

3. a) If $A \in F(X)$ for all $i \in I$, Where I is an index set, then prove that

$$i) \qquad \bigcup_{i \in I}^{\alpha +} A_i = {\alpha + \left(\bigcup_{i \in I} A_i\right)}$$

$$ii) \quad \bigcap_{i \in I}^{\alpha} + A_i \le {\alpha + \left(\bigcap_{i \in I} A_i\right)}$$
 (8)

- b) If $f: X \to Y$ be an arbitrary crisp function. Then for any $A \in F(X)$ and $B \in F(Y)$ prove that the following properties obtained by the extension principle hold
 - i) $f^{-1}(1-B) = 1 f^{-1}(B)$

ii)
$$f(1-A) \ge 1 - f(A)$$
 (8)

- 4. a) Give the axiomatic definition of fuzzy compliment. If a function $C:[0,1] \rightarrow [0,1]$ Satisfy the axioms C_2 and C_4 then prove that C also Satisfies C_1 and C_3 and C is a bijection (10)
 - b) If C is a Continuous fuzzy compliment then prove that C has a unique equilibrium(6)
- 5. a) prove that the standard fuzzy intersection is the only idempotent t norm (8)
 - b) Prove that for all $a, b \in [0,1]$ $i_{\min}(a,b) \le i(a,b) \le \min(a,b)$ Where i_{\min} denotes the drastic intersection (8)
- 6. a) If i_{ω} denote the class of yager t-norms defined by

$$i_w(a,b) = 1 - \min\left[1, \left[\left(1-a\right)^w + \left(1-b\right)^w\right]^{\frac{1}{2}w}\right], w > 0$$

then prove that
$$i_{\min}(a,b) \le i_w(\sigma b) \le \min(a,b)$$
 for all $a,b \in [0,1]$ (8)

- b) If $\langle i, u, c \rangle$ be a dual triple that satisfies the law of excluded middle and the law of contradiction, then prove that $\langle i, u, c \rangle$ does not Satisfy the disributive laws

 (8)
- 7. a) Define a fuzzy number and explain the arithmetic operations on two fuzzy numbers A and B with suitable example. (8)
 - b) Write a note on lattice of fuzzy numbers. (8)

- a) Define a fuzzy relation and explain with example.
- b) Write a note on projections and cylindrical extensions
- c) Define standard composition of two binary fuzzy relations P(X,Y) and Q(Y,Z)

If
$$P = [P_{ik}] = \begin{bmatrix} 0.3 & 0.5 & 0.8 \\ 0 & 0.7 & 1 \\ 0.4 & 0.6 & 0.5 \end{bmatrix}$$

8.

$$Q = [q_{kj}] = \begin{bmatrix} 0.9 & 0.5 & 0.7 & 0.7 \\ 0.3 & 0.2 & 0 & 0.9 \\ 1 & 0 & 0.5 & 0.5 \end{bmatrix}$$

Then obtain the standard composition R[X, Z] of P and Q

(8)

(4)

(4)

Roll No.	

[Total No. of Pages: 3

PGIS - N 1024 B - 14

M.Sc. Ist Semester(CBCS) Degree Examination

Mathematics

(Discrete Mathematics)

Paper: HCT - 1.4 (New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates

- i) Answer any **five** questions.
- ii) All questions carry equal marks.
- 1. a) Define a Poset and a lattice. For any a and b in a lattice (L, \leq) show that
 - i) $a \lor b = b \text{ iff } a \le b$
 - ii) $a \wedge b = a \text{ iff } a \leq b$
 - iii) $a \wedge b = a \text{ iff } a \vee b = b$

(5)

- b) If the join operation is distributive over the meet operation in a lattice, then prove that the meet operation is also distributive over the join operation. (5)
- c) Define a boolean algebra. If (L, \leq) is a boolean algebra, then for all a and b in L, Prove that
 - i) $(a \lor b)' = a' \land b'$

ii)
$$(a \wedge b)' = a' \vee b'$$

(6)

(5)

- 2. a) Define a OR-gate, AND gate and a NOT gate giving the logic tables.
 - b) Define
 - i) Min term ii) Max term.

Write the disjunctive normal form of the following functions.

(6)

(X_1, X_2, X_3)	(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1,1,1)
F ₁	1	1	0	0		0	1	1
F ₂	0	0	0	1	0	0	1	1

Discuss briefly about Relay in a switching circuit. c)

(5)

(4)

- 3. Suppose that a valid computer password consists of a seven characters, the first of a) which is a letter chosen from the set {A,B,C,D,E,F,G,} and the remaining six characters from the English alphabet or digit. How many different passwords are possible. (5)
 - For any two finite sets S and T Prove that $|S \cup T| = |S| + |T| |S \cap T|$ b) (6)
 - c) Using the principle of inclusion and exclusion determine the number of integers between 1 and 250 that are divisible by any of the integers 2,3,5 and 7. (5)
- 4. Solve the Recurrence relation $a_r = a_{r-1} + a_{r-2}$ with $a_{0=1}$ and $a_{1=1}$ (5) a)
 - Find the particular Solution of $a_r + 5a_{r-1} + 6a_{r-2} = 3r^2$ b) (5)
 - Solve $a_r = 3a_{r-1} + 2$; $r \ge 1$ with $a_0 = 1$ by the method of generating functions. c) (6)
- 5. Define a)
 - Weighted graph i)
 - Multigraph. ii)

Give examples for each

- Prove that a given connected graph G is an Euler graph if and only if all vertices of G
- b) are of even degree. **(6)**
- If G is a directed graph, then prove that $\sum_{i=1}^{n} \deg_{G} + (v_{i}) = \sum_{i=1}^{n} \deg_{G} (v_{i}) = |E|$ c) (6)
- 6. Prove that there is one and only one path between every pair of vertices in a tree T.(6) a)
 - b) Prove that a tree with n vertices has (n-1) edges. (6)
 - c) Define transport network with an example. (4)
- 7. IF (S, *) and (T, *) are monoids with identities e and e^{I} respectively. if $f: S \to T$ is an a) isomorphism, then prove that $f(e) = e^{1}$. **(6)**

- b) If G is a group and a,b are elements of G, Then Prove that
 - $i) \qquad \left(a^{-1}\right)^{-1} = a$

ii)
$$(ab)^{-1} = b^{-1}a^{-1}$$
 (4)

- c) State and prove Lagrange's theorem on groups. (6)
- 8. a) Write a note on Coding of binary in formation. (4)
 - b) Find the minimum distance of the (3,8) encoding function (6)

```
e: B^3 \rightarrow B^8 defined by

e(000) = 000000000

e(001) = 10111000

e(010) = 00101101

e(011) = 10010101

e(100) = 10100100

e(101) = 10001001

e(110) = 00011100

e(111) = 00110001
```

c) What is a group code. If $e: B^m \to B^n$ is a group code then show that the minimum distance of e is the minimum weight of a nonzero code word. (6)

Roll No.	

[Total No. of Pages: 3

PGIS-N 1029 B-14 M.Sc. Ist Semester (CBCS) Degree Examination Mathematics (General Topology) Paper - HCT-1.5 (New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- i) Answer any five questions.
- ii) All questions carry equal marks.
- 1. a) Define closure of a set. Let A and B be subsets of a space X then prove the followings (10)
 - i) \overline{A} is the smallest closed set containing A
 - ii) A is closed iff $A = \overline{A}$
 - iii) If A < B then $\frac{1}{A} \subset \overline{R}$
 - iv) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - V) $(\overline{\overline{A}}) = \overline{A}$
 - b) Prove that $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ and give an example to show that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$ (6)
- 2. a) Define limit point of a set. If A & B are subsets of a space X then prove the followings(8)
 - i) If $A \subset B$ then $D(A) \subset D(B)$
 - ii) $D(A \cup B) = D(A) \cup D(B)$
 - b) Define a subspace of a topological space. If (x, τ) be a topological space then show that a subspace of a subspace of a space is a subspace of the space (8)

- a) Define a continuous mapping in a topological space. If f be a mapping of a space X into space Y. Let S be the subbase for the topology on Y then prove the followings are equivalent
 - i) If f is continuous

3.

b)

b)

(8)

(8)

- ii) The inverse image of each member of S is open in X
- b) Let X, Y be the topological spaces and $f: X \to Y$ be a mapping then show that f is closed iff $\overline{f(A)} \subset f(\overline{A})$ for $A \subset X$ (8)
- 4. a) Prove that a space (X,Z) is a T_0 -space iff for each pair of distinct points $x,y \in X$, $\{\overline{X}\} \neq \{\overline{Y}\}$ (8)
 - Define a T_2 -space. If X is T_2 and $f: X \to Y$ is a closed bijection then show that Y is also T_2 -space (8)
- 5. a) Define a regular space. Show that regularity is a topological property (8)
- b) Show that normality is a topological property (8)
 6. a) State the axioms of countability. Let X be a first countable space and A = X then
- prove that for $a \in X$ is a limit point of A if and only if there exists a sequence $f: N \to A \{a\}$ converging to 'a' (8)
 - Prove the following conditions are equivalent
 - i) The space X is connected
 - ii) The only subsets of X which are both open and closed are $\phi \& X$
 - iii) No continuous function $f: X \to \{0,1\}$

7.	a)	Define a compact space. Show that any continuous image of a compact space is compact			
			(8)		
	b)	State and prove the Heine-Boral theorem	(8)		
8.	a)	Prove that in any metric space the set of all open spheres is a base for topology	on K		
			(8)		
	b)	Prove that a metric space is lindelof if and only if it is second countable	(8)		