PGIIIS-1590 B-17

M.Sc. IIIrd Semester (CBCS) Degree Examination ELECTRONICS & INSTRUMENTATION

(Embedded Systems and Applications)

Paper: HCT 3.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- i) Answer the questions as per the instructions.
- ii) Write questions numbers clearly.

Part -À

1. Answer any **EIGHT** of the following.

 $(8 \times 2 = 16)$

- a) Distinguish between general system and embedded systems. Give two examples for each.
- b) List any two characteristics of an embedded system.
- c) Draw the diagram of single bit SRAM.
- d) Explain the differences between ASIC and PLD.
- e) Write an embedded 'C' program to generate square wave using on-chip DACO of C 8051 F020.
- f) Explain the differences between OS and RTOS.
- g) Mention any two applications of on-chip PCA modulate of C 8051 F020.
- h) What are the vector interrupts of TIMER ϕ and TIMERI interrupt of C 8051 FO 20.
- i) How many serial ports are there for C 8051 F020, name them.
- j) Draw the block diagram of Air quality monitoring system.

Part - B

Answer any **FOUR** questions.

 $(4 \times 7 = 28)$

- 2. Explain various purposes of embedded system with examples.
- 3. Write a note on memory selection for embedded systems.

PGIIIS-1590B-17/2017

(1)

[Contd....

- 4. With diagram explain working and protocols of UART port.
- 5. Explain working of function in embedded 'C' with examples.
- 6. Describe the operation of on-chip ADCO mode of C 8051 F020.
- 7. With diagram explain working of C 8051 F020 based level control system.

Part - C

Answer any THREE of the following.

 $(8 \times 3 = 24)$

- **8.** Discuss the classifications of imbedded systems.
- 9. Explain basic design principles of embedded systems using RTOS
- 10. With the help of neat diagram, explain the working of on-chip PCA module of C 8051 F020.
- 11. With a neat sketch, explain the design and working of C 8051 F020 based temperature control system.
- 12. Write short note on any **TWO** of the following.

 $(2 \times 6 = 12)$

- a) Embedded systems on-chip.
- b) Processor directives
- c) PCA module.
- d) Lock in amplifier.

*** * * ***

Roll No. _____ [Total No. of Pages : 2

PGIIIS-1591 B-17

M.Sc. IIIrd Semester (CBCS) Degree Examination ELECTRONICS & INSTRUMENTATION

(Process Instrumentation)

Paper: HCT 3.2

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- i) Answer the questions as per the Instructions.
- ii) Write question numbers clearly.

Part-A

1. Answer any **EIGHT** of the following.

 $(8 \times 2 = 16)$

- a) What is the principle of Radiation type temperature measurement systems.
- b) What is atmospheric pressure?
- c) What is Ultra Sonic?
- d) What is the principle of Anemometer.
- e) Why the humidity at sea level is high?
- f) How the moisture is defined.
- g) What are the basic elements used in NMR methods for moisture measurement.
- h) What is the principle of resistance type level measurement.
- i) What is Radioactive material.
- j) Define liquid density.
- k) What is the principle of float type densitometer?
- 1) What do you mean by oscillating coriolis?

Part - B

Answer any FOUR questions.

 $(4 \times 7 = 28)$

- 2. Give an account on Informational practical temperature scale.
- 3. With a neat diagram explain the operation of Low-pressure measuring system.

PGIIIS-1591B-17/2017

(1)

[Contd....

- 4. With a neat sketch, show how Ultra Sonic flow meter is used to measure flow.
- 5. What is Pneumatic load cel? Explain its function.
- 6. Discuss the resistivity type moisture measurement system.
- 7. Explain the working of displacement type Densitometer.

Part - C

Answer any **THREE** of the following.

 $(3 \times 12 = 36)$

- 8. Give detailed explanation of Non-electrical temperature measurement and electrical temperature measurement systems.
- 9. Explain principle and working of Electromagnetic flow meter and mention its merits.
- 10. Define absolute, specific and relative humidity and explain the working electrolysis type hydrometer.
- 11. Give detailed explanation of the working and applications of hydrometers.
- 12. Write short note on any two of the following.

 $(2 \times 6 = 12)$

- a) Balance load cell
- b) Dew point measurement
- c) Vacuum measurement system
- d) Displacer type level measurement

Roll No.	
KOH MU.	

[Total No. of Pages: 2

PGIIIS-1592 B-17

M.Sc. III Semester (CBCS) Degree Examination ELECTRONICS & INSTRUMENTATION (Digital Signal Processors and Applications)

Paper: SCT 3.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer the quetions as per the instructions.

Part-A

1. Answer any **EIGHT** of the following questions.

 $(2 \times 8 = 16)$

- a) Give the classification of signals.
- b) Prove the shifting property in Z-transform.
- c) Find the Z-transform of a step signal.
- d) What is need for Digital Filter?
- e) What are the applications of Digital Signal Processors?
- f) Mention the ALUs of TMS 320C $5 \times DSP$.
- g) Describe LACC * +, O.
- h) What is Interrupt? List out interrupts in TMS 320 C $5 \times$ DSP.
- i) What is memory mapped register?
- j) What are the functions of on-chip peripherals?

Part - B

Answer any **FOUR** questions.

 $(4 \times 7 = 28)$

- 2. Briefly explain various types of systems.
- 3. Find the inverse transform of $x(z) = \frac{1 + \frac{1}{2}z^{-1}}{1 \frac{1}{2}z^{-1}}$

(1)

[Contd....

PGIIIS-1592 B-17/2017

- 4. Give the comparative study between IIR and FIR filters.
- 5. Write an ALP to find sum of N-natural numbers.
- 6. With a neat block diagram explain on-chip serial part.
- 7. Explain the addressing modes of DSP.

Part - C

Answer any THREE of the following questions.

 $(3 \times 12 = 36)$

- 8. Find the z-transform of the following functions.
 - a) $a^n \cos nw_0 t$
 - b) $e^{-3n} u (n-1)$
 - c) $3^n u (n-2)$
 - d) $n^2 u(n)$
- 9. Explain the method of design of IIR filter by Impulse Invariant Technique.
- 10. Explain generation of sine / cosine of waveforms in DSP.
- 11. Explain DSP based Lock-in Amplifier.
- 12. Write short note on any two of the following.

 $(2 \times 6 = 12)$

- a) Butterworth filter
- b) Properties of fourier is transform
- c) AIC
- d) Architectures of DSP

Roll No.	•

[Total No. of Pages: 2

PGIIIS-1593 B-17

M.Sc. III Semester Degree (CBCS) Examination ELECTRONICS & INSTRUMENTATION

(Introduction to Microprocessors & Microcomputers)

Paper: OET 3.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- i) Answer the questions as per the instructions.
- ii) Write question number clearly.

PART-A

1. Answer any **EIGHT** of the following.

 $(8 \times 2 = 16)$

- a) Define term interrupt and mention software interrupts of 8086.
- b) Define the directive EXTERN with a example.
- c) Differentate between 8086 and 8088.
- d) List the procedure and steps involved in the execution of an ALP.
- e) Define types of modes of operations used in 8086.
- f) Explain the memory mapped I/O in PC.
- g) Explain the instructions
 - i) XLAT
 - ii) ROL
- h) Mention the different data types used in MATLAB.
- i) List the advantages of GUI based system.
- j) List the applications of MATLAB.

PART-B

Answer any **FOUR** of the following.

 $(4 \times 7 = 28)$

- 2. Write an ALP in 8086 to add two 32 bit numbers and store the result in memory.
- 3. Explain the use of type 0 and type 2 interrupts of 8086.

(1)

[Contd....

- 4. Explain the addressing and decoding methods used in pc.
- 5. Write a program using MATLAB to plota curve for a function described by teh equation $y = x^4 + 2x^2 + 6$ where x varies from -20 to +20.
- 6. Explain about logical instructions of 8086 with example.
- 7. Write a function file in MATLAB for temperature conversion between celsius and fahrenheit.

PART-C

Answer any THREE of the following.

 $(3 \times 12 = 36)$

- 8. With a neat block diagram explain the each unit in the architecture of 8086.
- 9. With a neat diagram explain the procedure of interfacing seven segment display with 8086.
- 10. With a neat diagram explain the memory address decoding of pc.
- 11. Explain the operations and display formats of MATLAB with example.
- 12. Write short note on any two of the following.

 $(6 \times 2 = 12)$

- a) Control transfer instructions of 8086.
- b) ISA and EISA.
- c) BIOS and DOS interrupts of pc.
- d) Built in functions of MATLAB.

