Roll No.				

[Total No. of Pages: 2

PGIS-1077 B-17

M.Sc. Ist Semester (CBCS) Degree Examination Electronics and Instrumentation (Control Systems and Automation) Paper - HCT 1.3

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) Write question numbers clearly
- 2) Answer the questions as per the instructions

Part-A

1. Answer any Eight questions.

 $(8 \times 2 = 16)$

- a) Define control system.
- b) What is the effect of feedback on overall gain of the system?
- c) Give the examples for open loop control systems.
- d) List out standard Test signals.
- e) List out performance Indices
- f) Define Relative stability.
- g) Write the relation between W_n and W_d
- h) State the advantages of Bode plots.
- i) Define state variables.
- j) Define controllability.

Part - B

Answer any Four of the following questions

 $(4 \times 7 = 28)$

2. Give the comparative study between open loop and cloud loop control systems.

- 3. Find the transfer function of mechanical translation system.
- 4. Define and disjunction various static error coefficients.
- 5. Draw the polar plot for $G(S) = \frac{k}{1 + sT}$
- 6. Find the frequency response of first order system.
- 7. Explain the method of Diagonalisation.

Part - C

Answer any three of the following questions.

 $(3 \times 12 = 36)$

8. Find the Transfer functions for a system whose block diagram is shown below by using blocks diagram reduction techniques.

- 9. Find the stability a system whose characteristic equation is $q(s) = S^6+2S^5+8S^4+12S^3+20S^2+16S+16=0$ by R-H criteria comment on the stability of the system.
- 10. Draw the Bode plot (Magnitude) for G. system whose open loop Transfer function is

$$G(S) = \frac{20\left(1 + \frac{S}{10}\right)}{S\left(1 + \frac{S}{50}\right)}$$

- 11. Discuss the various methods of computing state transition matrix.
- 12. Write short notes on any two

 $(2 \times 6 = 12)$

- i) Transfer function for R-C circuit
- ii) Time response for 1st order system for step input
- iii) Nyquist stability criterion
- iv) Properties of state transition matrix

PGIS-1076 B-17 M.Sc. Ist Semester (CBCS) Degree Examination Electronics and Instrumentation (Fundamentals of Instrumentation) Paper - HCT 1.2

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates:

- 1) Answer the questions as per the instructions
- 2) Write question numbers clearly

Part-A

1. Answer any 8 questions.

 $(8 \times 2 = 16)$

- a) Define Transducer.
- b) Mention the signal conditioners used in Instrumentation.
- c) How the active and passive elements are defined.
- d) What do you mean impedance loading?
- e) What is the principle of capacitance transducer?
- f) Define piezo electric effect.
- g) Define the temperature coefficient of resistance of platinum.
- h) Mention the materials for strain gauge.
- i) How the light propagates through optical fiber.
- j) What are the advantages of active filters?
- k) Mention the applications of phase sensitive detector
- 1) Mention the applications of thermal type recorder.

Part - B

Answer any Four of the following questions

 $(4 \times 7 = 28)$

- 2. Give an account of classification of Instruments.
- 3. Discuss the working principle of displacement transducer.
- 4. What is RVDT? Show how RVDT is used?
- 5. Define Gauge factor and obtain expression for Gauge factor.
- 6. Discuss the operation of second order highpass Butter worth filter with a neat diagram.
- 7. Explain the principle and working of elastic transducer.

Part - C

Answer any three of the following questions.

 $(3\times12=36)$

- **8.** Explain the following:
 - i) Types of errors
 - ii) Specifications of instruments
- 9. With a neat diagram, explain the principle and working of optical encoders and LVDT.
- 10. With a neat sketch, explain the working and applications of photomultiplier tube.
- 11. Give detailed explanation on chopper stabilised DC amplifier.
- 12. Write short notes on any two

 $(2 \times 6 = 12)$

- a) Static characteristics of transducer
- b) Solid state sensors
- c) Vibrating element pressure sensor
- d) LCD display.

PGIS-1075 B-17 M.Sc. Ist Semester Degree Examination ELECTRONICS AND INSTRUMENTATION (Analog and Digital Electronics) Paper - HCT 1.1

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates:

- 1) Answer the questions as per the instructions
- 2) Write question numbers clearly

Part-A

1. Answer any 8 questions.

 $(8 \times 2 = 16)$

- a) Define form factor and ripple factor.
- b) Draw the diagram of half wave rectifier with input and output waveforms.
- c) A silicon diode with a forward voltage drop (V_F) of 0.7V is to be operated over a temperature range of 0°C to 65°C. Calculate the maximum and minimum values of V_F for the device.
- d) Define offset voltage and PSRR of op.amp.
- e) Draw the circuit diagram of current mirror.
- f) Define % of regulation. What is its value for LM723 voltage regulator?
- g) State Demorgan's theorems.
- h) Draw the diagram of 4-bit serial in parallel out shift register.
- i) Define fan in and fan out
- j) Draw internal circuit diagram of 2 input TTL NAND Gate.

Answer any Four of the following questions

 $(4 \times 7 = 28)$

- 2. Explain working of voltage multipliers with diagrams.
- 3. Explain working of LM723 voltage regulater.
- 4. Describe the operation of op. amp integrator and Differentiator with diagrams.
- 5. Discuss working of wein bridge oscillator with diagrams.
- 6. With diagram explain working of 4-bit parallel adder/subtracter.
- 7. With neat sketch explain working of mod 10 counter.

Part - C

Answer any three of the following questions.

 $(3\times12=36)$

- 8. With the help of neat diagram explain design and working of series voltage regulator using discrete components.
- 9. Discuss various op. amp. configurations with diagrams.
- 10. With neat diagrams explain working of Half adder, Full adder, Half Subtractor and full subtractor with truth tables.
- 11. Explain working of mod 8 synchronous up/down counter with necessary diagrams.
- 12. Write short notes on any Two

 $(2 \times 6 = 12)$

- i) SMPS
- ii) Instrumentation Amplifier
- iii) Master Slave JK flip flop
- iv) Shiff registers.

PGIS-1078 B-17

M.Sc. Ist Semester (CBCS) Degree Examination ELECTRONICS AND INSTRUMENTATION

(Introduction to 8086 Microprocessor and 'C' Programming)

Paper: SCT - 1.1

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- i) Answer the questions as per the instructions.
- ii) Write Q. No. clearly.

Part-A

1. Answer any **Eight** of the following.

 $(8 \times 2 = 16)$

- a) Define microprocessor. What is bit size of 8086 up.
- b) What decides bit-size of microprocessor?
- c) Mention any two differences between 80286 and 80386.
- d) What is interfacing?
- e) Mention any four salient features of A/D converter.
- f) Draw the protocols of 8251A USART in asynchronous mode.
- g) Explain the working of following instructions:
 - i) ADD

- ii) ADC
- h) Explain WHILE instruction in 'C' programming.
- i) Write a 'C' program to add elements of two arrays.
- j) What is the difference between arrays and pointers?

Part - B

Answer any Four of the following.

 $(4 \times 7 = 28)$

- 2. Discuss the addressing modes of 8086 microprocessor with examples.
- 3. Explain the classification of instruction set of 8086 microprocessor.

- 4. With a diagram, explain interfacing of two memory chips in even and odd bank, with 8086 microprocessor.
- 5. Write a note on interrupts.
- 6. With a neat diagram, explain interfacing of D/A converter with 8086 μp. Write 'C' program to generate square wave.
- 7. Explain working of IF, IF ELSE instructions with examples.

Part - C

Answer any Three of the following.

 $(3 \times 12 = 36)$

- 8. With a neat diagram, Discuss the architectural features of 8086 μp.
- 9. With a neat diagram, explain the operation of 8255. Also explain its interfacing with microprocessor.
- 10. Explain interfacing of A/D converter with microprocessor. Write an ALP to convert analog voltage into digital data.
- 11. Explain the various functions of C program. Also discuss the different ways of passing values to function with suitable examples.
- 12. Write short note on any Two:

 $(2 \times 6 = 12)$

- a) ALP development tools
- b) 8254
- c) Temperature control
- d) Structures
