Please use this identifier to cite or link to this item: http://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/3899
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNareshkumar B
dc.contributor.authorAkbar S.M
dc.contributor.authorSharma H.C
dc.contributor.authorJayalakshmi S.K
dc.contributor.authorSreeramulu K.
dc.date.accessioned2020-06-12T15:01:58Z-
dc.date.available2020-06-12T15:01:58Z-
dc.date.issued2017
dc.identifier.citationArchives of Insect Biochemistry and Physiology , Vol. 96 , 1 , p. -en_US
dc.identifier.uri10.1002/arch.21401
dc.identifier.urihttp://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/3899-
dc.description.abstractPhthalic acid diamide insecticides are the most effective insecticides used against most of the lepidopteran pests including Helicoverpa armigera, a polyphagous pest posing threat to several crops worldwide. The present studies were undertaken to understand different target sites and their interaction with insect ryanodine receptors (RyR). Bioassays indicated that flubendiamide inhibited the larval growth in dose-dependent manner with LD50 value of 0.72 ?M, and at 0.8 ?M larval growth decreased by about 88%. Flubendiamide accelerated the Ca2+-ATPase activity in dose-dependent trend, and at 0.8 ?M, the activity was increased by 77.47%. Flubendiamide impedes mitochondrial function by interfering with complex I and F0F1-ATPase activity, and at 0.8 ?M the inhibition was found to be about 92% and 50%, respectively. In vitro incubation of larval mitochondria with flubendiamide induced the efflux of cytochrome c, indicating the mitochondrial toxicity of the insecticide. Flubendiamide inhibited lactate dehydrogenase and the accumulation of H2O2, thereby preventing the cells from lipid peroxidation compared to control larvae. At 0.8 ?M the LDH, H2O2 content and lipid peroxidation was inhibited by 98.44, 70.81, and 70.81%, respectively. Cytochrome P450, general esterases, AChE, and antioxidant enzymes (catalase and superoxide dismutase) exhibited a dose-dependent increasing trend, whereas alkaline phosphatase and the midgut proteases, except amino peptidase, exhibited dose-dependent inhibition in insecticide-fed larvae. The results suggest that flubendiamide induced the harmful effects on the growth and development of H. armigera larvae by inducing mitochondrial dysfunction and inhibition of midgut proteases, along with its interaction with RyR. © 2017 Wiley Periodicals, Inc.en_US
dc.publisherJohn Wiley and Sons Ltd
dc.subjectcytochrome c
dc.subjectflubendiamide
dc.subjectHelicoverpa armigera
dc.subjectmitochondrial dysfunction
dc.subjectproteinases
dc.titleEvaluation of flubendiamide-induced mitochondrial dysfunction and metabolic changes in Helicoverpa armigera (Hubner)en_US
dc.typeArticle
Appears in Collections:1. Journal Articles

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.