Roll No.	

[Total No. of Pages: 2

PGIS-N-230 B-19 M.A./M.Sc. I Semester (CBCS) Degree Examination

MATHEMATICS Real Analysis

Paper: HCT 1.1

(New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer any five questions.
- 2. All questions carry equal marks.
- 1. a) If P* is a refinement of P, then prove that $L(P^*, f, \alpha) \ge L(P, f, \alpha) \text{ and } U(P^*, f, \alpha) \le U(P, f, \alpha)$ (8)
 - b) If $f \in \mathbb{R}(\alpha_1)$ and $f \in \mathbb{R}(\alpha_2)$ then prove that $f \in \mathbb{R}(\alpha_1 + \alpha_2) \text{ and } \int_a^b f \, d(\alpha_1 + \alpha_2) = \int_a^b f \, d\alpha_1 + \int_a^b f \, d\alpha_2 \tag{8}$
- 2. a) If f and φ are continuous on [a,b], φ is strictly increasing on [a,b] and χ is inverse function of φ . Then show that $\int_{a}^{b} f(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(\chi(y)) d\chi(y)$ (8)
 - b) If $\sqrt{\ }$ is a smooth curve in R³ such that $\sqrt{\ }$ exists and is continuous on [a,b] then prove that $\sqrt{\ }$ is rectifiable and has a length $\int_a^b \left| \sqrt{\ }'(t) \right| dt$ (8)
- 3. a) If a series $\sum f_n$ converges uniformly to f in [a,b] and x_0 is a point in [a,b] such that $\lim_{n\to\infty} f_n(x) = a_n$, $n = 1, 2, \ldots$ then prove
 - i) The series $\sum a_n$ converges and

ii)
$$\lim_{x \to x_0} f(x) = \sum_{n=1}^{\infty} a_n$$
 (8)

b) Prove that if a series $\sum f_n$ converges uniformly to f in [a,b] and its terms f_n are continuous at a point $x_0 \in [a,b]$, then the sum function f is also continuous at x_0

(8)

- a) If a sequence \(\langle f_n \rangle \) of continuous function defined on [a,b] is monotonic increasing and converges to a continuous function f, then show that the convergence is uniform on [a,b].
 - Prove that if f is a bounded variation on [a,b], then it is also bounded variation on [a,c] and [c,b] where c is a point of [a,b] and conversely. Also prove V(f,a,b) = V(f,a,c) + V(f,c,b). (8)
- 5. Show that IA be an algebra of real continuous functions on a complex set K. If IA separates points on K and if IA vanishes at no point of K, then the uniform closure IB of IA consists of all real continuous functions on K. (16)
- 6. a) Prove that if $\sum a_n x^n$ be a power series with finite radius of convergence R and let $f(x) = \sum a_n x^n$, -R < x < R, . If the series $\sum a_n x^n$ converges, then $\lim_{x \to R \to 0} f(x) = \sum a_n R^n$ (8)
 - b) If a function φ is bounded and integrable on [a,b], then prove that as $n \to \infty$ $A_n = \int_a^b \varphi \cos nx \, dx \text{ and } B_n = \int_a^b \varphi \sin nx \, dx \tag{8}$
- 7. a) If a function f is bounded and integrable in [0,a], a > 0 and monoton in $]0, \delta[$, $0 < \delta < a$, then show that $\lim_{n \to \infty} \int_0^a f \frac{\sin nx}{x} dx = f(0+) \int_0^\infty \frac{\sin x}{x} dx$ (8)
 - b) Define gamma function and prove $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. Also find
 - i) $\Gamma(\frac{3}{2})$ ii) $\Gamma(\frac{5}{2})$ iii) $\Gamma(\frac{5}{2})$ (8)
- 8. a) Show that a linear operation Ton a finite dimensional vector space X is one-to-one if and only if the range of T is all of X. (8)
 - b) Prove that if f is a function of class C, then f is a differentiable function. (8)

PGIS-236 B-19

M.Sc. I Semester (CBCS) Degree Examination MATHEMATICS

Fuzzy Sets And Fuzzy Systems

Paper: SCT 1.2

(Old and New)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) Answer any Five full questions.
- 2) All questions carry equal marks
- 1. a) Define the following

(8)

- i) Fuzzy Set
- ii) α -cut of a fuzzy set
- iii) Strong α -cut of a fuzzy set
- iv) Height of a fuzzy set.

Explain with suitable example.

b) Let $x = \{5,10,20,30,40,50,60,70,80\}$ be the universal set of ages. Adult and young are the two fuzzy sets defined on x as

Adult = 0.8/20 + 1/30 + 1/40 + 1/50 + 1/60 + 1/70 + 1/80

Young = 1/5 + 1/10 + 0.8/20 + 0.5/30 + 0.2/40 + 0.1/50 then find

- i) Young U Adult
- ii) Young \cap Adult
- iii) (Young ∪Adult)

PGIS-236 B-19/2019

(1)

[Contd....

2. a) Show that the Demorgans laws are satisfied for the three pairs of fuzzy sets A, B, and

C with
$$\mu_A(x) = \frac{1}{1+20x}; \mu_B(x) = \left(\frac{1}{1+10x}\right)^{1/2}; \mu_C(x) = \left(\frac{1}{1+10x}\right)^2.$$
 (8)

- b) Let $A, B \in F(x)$. Then prove the following for all $\alpha \in [0,1]$ (8)
 - i) ${}^{\alpha}(A \cap B) = {}^{\alpha}A \cap {}^{\alpha}B$
 - ii) $\alpha (A \cup B) = \alpha A \cup \alpha B$

3. a) For any
$$A \in F(x)$$
, prove that $A = U \cap A = U \cap$

- b) State and prove the first decomposition theorem. (8)
- 4. a) Let $f: X \to Y$ be an arbitrary crisp function. Then for $A \in F(X)$ prove that $f(1-A) \ge 1 f(A)$
 - b) Let $C:[0,1] \to [0,1]$ satisfy the axioms C_2 and C_4 of fuzzy complement, then prove that C also satisfies C_1 and C_3 and also show that C is a bijective function. (8)
- 5. a) State and prove second characterization theorem. (8)
 - b) For all $a,b \in [0,1]$, prove that $i_{\min}(a,b) \le i(a,b) \le \min(a,b)$ where i_{\min} denotes the drastic intersection. (8)
- a) Given an involutive fuzzy complement C and an increasing generator g of C, then
 prove that, the t-norm and t-conorm generated by g are dual with respect to C. (8)
 - b) Write a note on fuzzy aggregation operations. (8)

7. Let $A \in F(\mathbb{R})$ then, prove that A is a fuzzy number iff there exists a closed interval

$$[a,b] \neq \phi \text{ such that } \mu_{\Lambda}(x) = \begin{cases} 1 & \text{for } x \in [a,b] \\ l(x) & \text{for } x \in (-\infty,a) \\ r(x) & \text{for } x \in (b,\infty) \end{cases}$$
 (16)

Where $l:(-\infty,a)\to[0,1]$ is monotonic increasing, continuous from right and such that l(x)=0 for $x\in(-\infty,w_1)$; and $r:(b,\infty)\to[0,1]$ is monotonic decreasing, continuous from left and such that r(x)=0 for $x\in(w_2,\infty)$.

- 8. a) Distinguish between fuzzy relations and crisp relations. Give an example of each. (7)
 - b) Define the following (9)
 - i) Height of a fuzzy relation
 - ii) Inverse of a fuzzy relation
 - iii) Standard composition and explain with suitable example.

Roll No		[Total No. of Pages: 2

PGIS-O-231 B-19 M.Sc. I Semester Degree Examination MATHEMATICS Algebra - I

Paper: HCT 1.2
(Old)

Maximum Marks: 80 Time: 3 Hours Instructions to Candidates: Answer any five questions. 1. All questions carry equal marks. 2. Define normalizer of an element. Show that if $a \in G$, G is a group then N(a), 1. (8)normalizer of a is a subgroup of G. Show that S_n is a finite group of order $\lfloor n \rfloor$ and is non-abelian if n > 2. (8)b) Show that every permutation $\sigma \in S_n$ where S_n is the symmetric group can be expressed 2. a) (8)as a product of disjoint cycles. (8)Derive the class equation for finite group. b) (8)State and prove Cauchy's theorem. 3. a) Define a Sylow's P-subgroup of a group G with an example. (8)b) Prove that G is solvable iff $G^{(n)} = \{e\}$ for some non-negative integer n. (8)4. a) Prove that any group of order pq, p and q being distinct primes is solvable. (8)b) Show that ring of integers is a Euclidean ring. (8)5. a) (8)State and prove Eisenstein's criterion of irreducibility. Show that the set R[x] of all polynomials over R forms a ring for the operations 6. (8) addition and multiplication. State and prove first isomorphism theorem for rings. (8)

(1)

PGIS-O-231 B-19/2019

[Contd....

- 7. a) Show that the product of two primitive polynomials over UFD is a primitive polynomial. (8)
 - b) Let K/F be a finite extension. Then show that K/F is an algebraic extension. (8)
- 8. a) Let $f(x) \in F[x]$ be of degree n. Then show that f(x) has a splitting field. (8)
 - b) Define perfect field. Let F be a field of characteristic $P(\neq 0)$. Show that an element a, in some extension of F, is separable over F iff $F(a^P) = F(a)$. (8)