PGHIS 1576 B - 15

M.A./M.Sc. IIIrd Semester (CBCS) Degree Examination

Statistics

(Practicals Based on HCT 3.1)

Paper - HCP 3.1

Time: 2 Hours Maximum Marks: 30

Instructions to Candidates

- 1) Answer any two questions
- 2) All questions carry equal marks.
- 1. Consider a markov chain With the following transition probabilities matrix (t.p.m)

$$P = 1 \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{pmatrix}$$

Show that the markov chain is irreducible, periodic with period 2 and the states of the markov chain are persistent - non - null.

2. Consider a markov chain having the transition probability matrix

$$P = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1/4 & 1/2 & 1/4 & 0 & 0 & 0 \\ 0 & 1/5 & 2/5 & 1/5 & 0 & 1/5 \\ 0 & 0 & 0 & 1/6 & 1/3 & 1/2 \\ 0 & 0 & 0 & 1/4 & 0 & 3/4 \end{bmatrix}$$

Find Stationares distribution concentrated on each of the irredueible closed set

- 3. a) The number of accidents in a town follows a poision process with a mean of 2 per day and the number X_i of people involved in the i^{th} accident has the distribution $P\{X_i = k\} = \frac{1}{2^k}, \ k \ge 1 \text{ find the mean and variance of the number of people involved in accidents per week}$
 - b) The population of a country increases as yule-fussy process at the rate of 0.03 per year. The initial population is 10^{10}
 - i) Find the expected population after 20 years
 - ii) How many years will it take for the population to be 5×10^{10} ?
- 4. Mr. X has exactly 3 children who independently of each other have equal probability 0.5 of being a boy or a girl the same pattern continues in the male dependant of Mr.X
 - i) What is the probabilities that the male dependant eventually become extinct?
 - ii) What is the rate fo increase of male population?
 - iii) If there is probability 0.2 of death for a boy and 0.25 for a girl, find the survival rate for male and female.

Roll No.	

[Total No. of Pages: 2

PGIIIS 1572 B-15 M.A./M.Sc. IIIrd Semester (CBCS) Degree Examination Statistics (Stochastic Processes) Paper - HCT - 3.1

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates:

Answer any Six questions from Part-A and Five questions from Part - B.

 $PART - A \qquad (6 \times 5 = 30)$

- 1. Discuss classification of one dimensional stochastic processes.
- 2. Show that for a Poisson process $\{N(t), t \ge 0\}$ as $t \to \infty$, $\frac{N(t)}{t}$ is an estimate of the mean rate λ
- 3. Obtain probability of ultimate ruin of Gamblers ruin problem.
- 4. Explain birth and death process.
- 5. Discuss briefly pure birth process.
- 6. Obtain the distribution of first passage time to a fixed point of a Wiener process.
- 7. Discuss reward process.
- 8. Prove that for a branching process.

$$\{x_n, n \ge 0\} P_n(s) = P_{n-1}(P(s))$$

PART-B

 $(5 \times 10 = 50)$

- 9. State and prove Chapman Kolmogorov equation for obtaining higherStep transition probabilities.
- 10. State and prove the basic Limit theorem of a Maslow Chain.
- 11. Show that if state K is either transient or persistent null then for every state j

$$\stackrel{(n)}{P_{ik}} \to 0$$
 as $n \to \infty$ and if state K is a periodic, persistent non - null then

$$P_{jk}^{(n)} \rightarrow \frac{F_{jk}}{\mu_{kk}} as n \rightarrow \infty$$

12. Prove that if $\{N(f), t \ge 0\}$ is a Poisson process then for s<t

$$P\left\{N\left(s\right) = k / N\left(t\right) = n\right\} = \binom{n}{k} \left(\frac{s}{t}\right)^{k} \left(1 - \frac{s}{t}\right)^{n-k}$$

13. Show that for an immigration and Emigration process.

$$P_n = \left(\frac{\lambda}{\mu}\right)^n P_0 \text{ if } n \ge 1, \text{ Where } P_0 = 1 - \frac{\lambda}{\mu}$$

14. Show that for a Wiener process

$$\{*(t), 0 \le t \le T\}$$
 with $x(0) = 0, M = 0$

$$\{(i),0\leq i\leq i\}\ with x(0)=0,\ M=0$$

 $P\{M(T) \ge a\} = 2P\{x(T) \ge a\}$, for any a>0. Where M(T) is the maximum of X(t) in $0 \le t \le T$

16. For a branching process $\{x_n, n \ge 0\}$ with $Bx_1 = m \& v(x_1) = \sigma^2$

show that
$$V(X_n) = \begin{cases} \frac{m^{n-1}(m^{n-1})}{m-1} \sigma^2, & \text{if } m \neq 1 \\ n\sigma^2, & \text{if } m = 1 \end{cases}$$

Roll No.	

[Total No. of Pages: 2

PGIIIS 1573 B-15 M.Sc. IIIrd Semester (CBCS) Degree Examination Statistics (Design and Analysis of Experiments) Paper - HCT - 3.2

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates:-

Answer any six questions from Part-A and five questions from Part-B.

 $Part - A (6 \times 5 = 30)$

- 1. Define C-matrix of a block design. Show that it is a singular matrix.
- 2. Define an orthogonal design. Show that RBD is orthogonal.
- 3. Describe Tukey's multiple comparison method.
- **4.** Prove that $b \ge t$ in case of a BIBD with b blocks and t treatments.
- 5. Define one way random effects model. How it differs from a fixed effects model?
- 6. What do you understand by complete and partial confounding? Discuss their advantages.
- 7. Explain a situation under which a split plot design is used. Set up the ANOVA table.
- 8. What is analysis of covariance technique? When is it used?

 $Part -B (5 \times 10 = 50)$

- 9. a) In a Gauss-Markov model, derive a necessary and sufficient condition for the linear parametric function to be estimable.
 - b) Given the model:

 $E(y_1) = \theta_1 - \theta_2 + \theta_3, E(y_2) = \theta_2 + \theta_3, E(y_3) = \theta_1 - 3\theta_2 - \theta_3, E(y_4) = \theta_1 - 2\theta_2, \text{ examine the estimability of } \theta_1 + 2\theta_3.$ (5+5)

a) Define BLUE. Show that it is unique.

10.

- b) Let y_1 , y_2 , y_3 be independent random variables with common variance. σ^2 and $E(y_1) = \theta_1 + 2\theta_2$, $E(y_2) = \theta_1 + \theta_3$, $E(y_3) = \theta_2 + \theta_3$. Obtain the BLUE of $\theta_1 \theta_2$
- 11. Explain the analysis of variance of two way classified data with m observations per cell.
- 12. Out line the missing plot technique with reference to a LSD.
- 13. Outline the intrablock analysis of a BIBD.
- 14. For a 2³ factorial experiment, show that main effects and interaction effects represent a complete set of orthogonal contrasts. Give the procedure for testing their significance.
- 15. Discuss the analysis of a 2³ factorial experiment in which the interaction effect ABC is completely confounded.
- **16.** Given the model $y_{ij} = \mu + \alpha_i + \beta_j (x_{ij} \overline{x}) + e_{ij}$, i = 1, 2, ..., t; j = 1, 2, ..., r, e_{ij} are iid as $N(0, \sigma^2)$, describe the likelihood ratio test for testing the hypothesis $H_0: \beta = 0$.

PGIIIS 1574 B-15 M.Sc. IIIrd Semester (CBCS) Degree Examination Statistics (Demography)

Paper: SCT 3.1(a)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) Answer any six questions from Part A and Five questions from Part B
- 2) All questions carry **equal** marks.

Part - A

 $(6 \times 5 = 30)$

- 1. What is age heaping? Explain Whipple's index of measuring age-heaping.
- 2. What are context and coverage errors? Explain Dejure and Defacto methods of population census.
- 3. Explain Brass P/F ratio method of estimating TFR using incomplete data
- 4. Define IMR. Explain the factors responsible for increasing IMR
- 5. Distinguish between CDR and ASDR. Establish the relationship between these two measures
- 6. With usual notations for a stable population, show that $r = \frac{\log R}{T}$
- 7. Explain reproduction rates. What is replacement level fertility?
- 8. Explain natural growth rate method and the residual method of Migration

- **9.** Explain chandrashekaran and deming method of estimation of missing observations in survey data.
- 10. What is Fertility rate? Discuss the measures of fertility with their merits and demerits
- 11. a) What is age standardization? Explain its importance in comparison of death rates of two regions
 - b) Explain the direct and indirect methods of standardized death rates.
- 12. What are abridged life tables? Derive the probability of distribution associated with a life table function l(x)
- 13. a) Define force of Mortality and derive. $\mu_x = \frac{1}{l_x} \frac{d}{dx} l_x$
 - b) Explain the columns of life table
- 14. a) Define Migration. Explain push pull factors of Migration
 - b) Discuss the impact of Migration on population size and structure.
- 15. Define stable population with usual notations prove that $C(x)=be^{-rx} P(x)$ under constant fertility and mortality schedule.
- **16.** a) What are the Mathematical methods of population estimation? Explain any one of them
 - b) Explain the component method of estimating the population.

PGIIIS 1575 B-15 M.Sc. IIIrd Semester (CBCS) Degree Examination Statistics (Statistical Methods) Paper - OET - 3.1

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates:

Answer any Six questions from Part-A and five questions from Part-B.

PART-A

Answer any Six questions:

 $(6 \times 5 = 30)$

- 1. Define probability when the sample space is finite. Give an example.
- 2. Define a random variable. What are its types?" Give examples.
- 3. Discuss various types of statistical hypothesis along with examples.
- 4. What is an optimum test procedure?
- 5. The regression line of y on x is y-10.5 = 4.5 (x-9.5) and that of x on y is x-9.5 = 1.62(y-10.5). Find the means, variances and the correlation coefficient.
- 6. Outline one sample sign test.
- 7. Explain the layout of LSD.
- **8.** Explain the analysis of Variance. What are its uses?

Part - B

Answer any Five questions.

 $(5 \times 10 = 50)$

- 9. a) Obtain the coefficient of variation of the first 19,999 natural numbers.
 - b) Outline the properties of standard deviation.

(5+5)

10. a) For two independent events A and B. Prove that

$$P(A \cup B) = P(A) + P(B)P(\overline{B})$$
 where $P(\overline{B}) = 1 - P(B)$

b) B_1 , B_2 B_k are disjoint events such that $UB_i = \Omega$ (sample space) and $P(B_i) > 0$ i = 1,2.....k. For any event A. Find P(A). (5+5)

11. a) Define:

- i) Test procedure.
- ii) Critical region.
- iii) Types of errors.
- iv) Level of significance.
- v) Size of a test.
- b) Outline the steps in writing an optimum test procedure. (5+5)
- 12. a) Let $X: N(\mu_1, \sigma^2), Y: N(\mu_2, \sigma^2)$ where X and Y are independent and σ^2 is not known. Write down the optimum test for testing $H_0: \mu_1 \mu_2 \le a \ Vs \ H_1: \mu_1 \mu_2 > a$. Where a is a real number.
 - b) The weights in kg of 5 couple are given below. At 5% level of significance can we conclude that on an average. The weights of husbands and those of wives are same? Use $P(|t_4| > 2.306) = 0.05$

Weight of husband	Weight of wife	
60	55	
55	60	
65	65	
70	65	
60	60	(5+5)

- 13. a) Briefly explain linear regression.
 - b) Using the data of question 12 b) test for the significance of correlation between the weights of husbands and weights at 5% level given that $P(|t_2| > 3.182) = 0.05$. (5+5)
- **14.** a) Describe mann-whitney u-Test.
 - b) Out line the analysis of variance in CRD. (5+5)
- 15. a) Briefly explain the chi-square test of independence of attributes.
 - b) At 5% level, test whether eye colour and hair colour are associated using the following table given that $P(\alpha_2^2 > 5.991) = 0.05$. (5+5)

·	Hair colour	
Eye colour	Black	Brown
Black	50	30
Brown	40	40
Green	10	30

16. Write short notes on any Two of the following.

(5)

- a) Normal distribution.
- b) Testing for the variances of two independent normal populations
- c) Testing for the proportions of two populations
- d) RBD.